• Title/Summary/Keyword: Ground Heat Exchangers

Search Result 97, Processing Time 0.025 seconds

A Study on the Thermal Characteristics of Horizontal Ground Heat Exchanger using Thermal Response Test (열응답시험을 이용한 수평형 지중열교환기 열특성 연구)

  • Chang, Keun Sun;Kim, Min-Jun;Kim, Young-Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.24-30
    • /
    • 2016
  • Vertical and standing column well ground heat exchangers have mostly been installed for ground source heat pump systems (GSHP) and thermal response tests (TRT) have been applied to evaluate the thermal characteristics for these heat exchangers. In this paper, the TRT coupled with a line source method was applied to evaluate the thermal characteristics of the horizontal ground heat exchanger (HGHX). Load tests of a HGHX were also performed to examine the daily variations of the ground and fluid temperatures associated with the daily intermittent operation of GSHP. For this test, the straight HGHX (depth 2 m, length 50 m, 8 line) was installed in Ansan city. The results showed that the variations of ground thermal conductivity of HGHX during one year were relatively small with the range of $1.43{\sim}1.64W/m{\cdot}K$, and the maximum and minimum values appeared in December and May, respectively. Load tests with heat injection rate of 6.0 kW for 10 hours per day to HGHX during twelve days were performed in June, September and December, and resulted in a ground initial temperature rise of $4.31^{\circ}C$, $3.14^{\circ}C$, and $1.21^{\circ}C$ during these days, respectively.

Numerical Analysis on the Heat Transfer Characteristics of HDPE Pipe with the Variation of Geometries for Ground Loop Heat Exchangers (지중열교환기의 고밀도폴리에틸렌 배관 형상에 따른 열전달 성능 특성에 대한 수치해석적 연구)

  • Mensah, Kwesi;Choi, Jong Min
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.12 no.4
    • /
    • pp.33-39
    • /
    • 2016
  • A ground source heat pump (GSHP) system is recommended as a heating and cooling system to solve the pending energy problem in the field of air conditioning, because it has the highest efficiency. However, higher initial construction cost works as a barrier to the promotion and dissemination of GSHP system. In this study, numerical analysis on the characteristics of high density polyethylene (HDPE) pipe with spiral inside was executed. The heat transfer and flow characteristics of it were compared with those of a conventional smooth HDPE pipe. The heat transfer coefficient and pressure drop of the spiral HDPE pipe were higher than those of the smooth HDPE pipes at the same fluid flow rate. By decreasing the flow rate, the spiral HDPE pipe represented similar values of heat transfer coefficient and pressure drop to the smooth HDPE pipe. The lower flow rate of the spiral HDPE pipe comparing with it of the smooth HDPE pipe is estimated to reduce the length of the ground loop heat exchanger.

A Study on Development of a Ground-Source Heat Pump System Utilizing Cast-in-place Concrete Pile Foundation of a Building (현장타설형 건물 기초를 이용한 지중열 공조시스템의 성능평가에 관한 연구)

  • Hwang, Suck-Ho;Nam, Yu-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.9
    • /
    • pp.641-647
    • /
    • 2010
  • Ground-source(Geothermal) heat pump(GSHP) systems can achieve a higher coefficient of performance than conventional air-source heat pump(ASHP) systems. However, GSHP systems are not widespread because of their expensive installation costs. The authors have developed a GSHP system that employs the cast-in-place concrete pile foundations of a building as heat exchangers in order to reduce the initial cost. In this system, eight U-tubes are arranged around the surface of a cast-in-place concrete pile foundation. The heat exchange capability of this system, subterranean temperature changes and heat pump performance were investigated in a full-scale experiment. As a result, the average values for heat rejection were 186~201 W/m(per pile, 25 W/m per pair of tubes) while cooling. The average COP of this system was 4.6 while cooling; rendering this system more effective in energy saving terms than the typical ASHP systems.

A Study on the Effects of Design Parameters of Vertical Ground Heat Exchanger on the Borehole Thermal Resistance (수직밀패형 지중열교환기의 설계인자가 보어홀 전열저항에 미치는 영향에 관한 연구)

  • Chang, Keun Sun;Kim, Min-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.128-135
    • /
    • 2018
  • Currently, vertical closed ground heat exchangers are the most widely utilized geothermal heat pump systems and the major influencing parameters on the performance of ground heat exchangers are the ground thermal conductivity(k) and borehole thermal resistance($R_b$). In this study, the borehole thermal resistance was calculated from the in-situ thermal response test data and the individual effects of design parameters (flow rate, number of pipe, grout composition) on the borehole thermal resistance were analyzed. The grout thermal resistance was also compared with the correlations in the literatures. The borehole thermal resistance of the investigated ground heat exchanger results in 0.1303 W/m.K and the grout thermal resistance (66.6% of borehole thermal resistance) is the most influencing parameter on borehole heat transfer compared to the other design parameters (pipe thermal resistance, 31.5% and convective thermal resistance, 1.9%). In addition, increasing the thermal conductivity of grout by adding silica sand to Bentonite is more effective than the other design improvements, such as an increase in circulating flowrate or number of tubes on enhancing borehole heat transfer.

Heating and Cooling Performance Characteristics of Ground Source Heat Pump System Utilizing Building Structures as Heat Source and Sink (빌딩 구조체 활용 지열원 열펌프 시스템의 냉난방성능 특성)

  • Kim, Namtae;Choi, Jong Min;Sohn, Byonghu;Baek, Sung-Kwon;Lee, Dong-Chul;Yang, Hee-Jung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.143.2-143.2
    • /
    • 2011
  • Energy foundations and other thermo-active ground structure, energy wells, energy slab, and pavement heating and cooling represent an innovative technology that contributes to environmental protection and provides substantial long-term cost savings and minimized maintenance. This paper focuses on earth-contact concrete elements that are already required for structural reasons, but which simultaneously work as heat exchangers. Pipes, energy slabs, filled with a heat carrier fluid are installed under conventional structural elements, forming the primary circuit of a geothermal energy system. The natural ground temperature is used as a heat source in winter and heat sink in summer season. The system represented very high heating and cooling performance due to the stability of EWT from energy slab. Maximum heat pump unit COP and system COP were 4.9 and 4.3.

  • PDF

Sizing of Vertical Borehole Heat Exchangers using TRNOPT (TRNOPT를 이용한 수직 지중열교환기 길이 산정 방법에 관한 연구)

  • Park, Seung-Hoon;Lee, Hyun-Soo;Jang, Young-Sung;Kim, Eui-Jong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.10
    • /
    • pp.402-407
    • /
    • 2016
  • Ground-coupled heat pump systems have been widely used, as they are regarded as a renewable energy source and ensure a high annual efficiency. Among the system components, borehole heat exchangers (BHE) play an important role in decreasing the entering water temperature (EWT) to heat pumps in the cooling season, and consequently improve the COP. The optimal sizing of the BHEs is crucial for a successful project. Other than the existing sizing methods, a simulation-based design tool is more applicable for modern complex geothermal systems, and it may also be useful since design and engineering works operate on the same platform. A simulation-based sizing method is proposed in this study using the well-known Duct STorage (DST) model in Trnsys. TRNOPT, the Trnsys optimization tool, is used to search for an optimal value of the length of BHEs under given ground loads and ground properties. The result shows that a maximum EWT of BHEs during a design period (10 years) successfully approaches the design EWT while providing an optimal BHE length. Compared to the existing design tool, very similar lengths are calculated by both methods with a small error of 1.07%.

Verification experiment of a ground source multi-heat pump at cooling mode (지열원 시스템 히트펌프의 냉방 성능 특성에 관한 실증 연구)

  • Lim, Hyo-Jae;Kang, Shin-Hyung;Choi, Jae-Ho;Choi, Jong-Min;Moon, Je-Myung;Kwon, Young-Seok;Kwon, Hyung-Jin;Kim, Rock-Hee
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.21-26
    • /
    • 2008
  • Recently, small and medium-sized buildings have employed a multi-heat pump. The major benefits of the multi-heat pump over a conventional system are that it is easier system to maintain along with a diversification of facility use, and high comfortability. The performance of multi-heat pump systems can be enhanced by using geothermal energy instead of air source energy. This paper describes the multi-heat pumps applied in an ground source heat pump system for an actual building. The performance of a ground source multi-heat pump installed in the field was investigated in cooling mode. The maximum COP of the systems with single U-tube and double tube ground loop heat exchangers were 6.6 and 6.0, respectively. It is suggested that the new algorithms to control the flow rate of secondary fluid for ground loop heat exchanger have to be developed in order to enhance the performance of the system.

  • PDF

A Study on Thermal Conductivity Properties of Ground Heat Exchangers for GSHP systems (지열냉난방시스템 수직형 지중열교환기 그라우트의 열적 특성에 관한 연구)

  • Baek, Sung-Kwon;Jeon, Joong-Kyu;An, Hyung-Jun
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.429-433
    • /
    • 2007
  • Cement mortar and concrete can be used as grouts but problems regarding shrinkage and the discord of coefficients of thermal expansion between grouts and HDPE pipes has to be solved. Thermal conductivities of wet condition two times larger than those of dry condition, except for pure cement mortar. The addition of sand into the cement grouts greatly increases the thermal conductivity. The addition of bentonite into the cement grouts reduces thermal conductivity thus reducing the density. Bentonite grouting must be used only below the groundwater table since bentonite grouts possesses high shrinkage property in dry condition. The addition of sand prevents the shrinkage of bentonite grouts. Bentonite manufactured in Korea can be used since they possess similar thermal conductivities with imported products. The addition of sand into the bentonite grouts greatly increases the thermal conductivity.

  • PDF

A Study on Development of a Ground-Source Heat Pump System Utilizing Pile Foundation of a Building (건물 기초를 이용한 지중열 공조시스템의 개발에 관한 연구 (1))

  • Ryozo, Ooka;Nam, Yu-Jin;Kentaro, Sekine;Mutsumi, Yokoi;Yoshiro, Shiba;Hwang, Suck-Ho
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.148-154
    • /
    • 2005
  • Ground-source (Geothermal) heat pump (GSHP) systems can achieve a higher coefficient of performance than conventional air-source heat pump (ASHP) systems. However, GSHP systems are not widespread in Japan because of their expensive boring costs. The authors have developed a GSHP system that employs the cast-in-place concrete pile foundations of a building as heat exchangers in order to reduce the initial boring cost. In this system, eight U-tubes are arranged around the surface of a cast-in-place concrete pile foundation. The heat exchange capability of this system, subterranean temperature changes and heat pump performance were investigated in a foil-scale experiment. As a result, the average values for heat rejection were 186${\sim}$201 W/m (for pile, 25 W/m per Pair of tubes) while cooling. The average COP of this system was 4.6 while cooling; rendering this system more effective in energy saving terms than the typical ASHP systems. The initial cost of construction per unit for heat extraction and rejection is ${\yen}$72/W for this system, whereas it is f300/W for existing standard borehole systems.

  • PDF

The Comparison of the EWT&LWT between Field Measurement and CFD of Vertical-type Geothermal Heat Exchanger (수직형 지열교환기의 입.출구온도에 대한 실측과 CFD 결과 비교)

  • Woo, Sang-Woo;Kim, Joong-Hun;Shin, Seung-Ho;Hwang, Kwang-Il
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.3 no.1
    • /
    • pp.11-16
    • /
    • 2007
  • The purpose of this study is to use the CFD(Computational Fluid Dynamics) method for the ground source heat pump(GSHP) system with vertical U-tube ground heat exchangers. In order to predict LWT(leaving water temperature) in the length of time, This simulation is used by utilizing FLUENT which is commercial CFD code. It was performed by based on four boreholes in the field. Comparing with the results of CFD and field measurement for LWT, the results of CFD was presented very good agreement with 1.0% average difference.

  • PDF