• Title/Summary/Keyword: Ground Control Point (GCP)

Search Result 86, Processing Time 0.025 seconds

Quality Assessment of Digital Surface Model Vertical Position Accuracies by Ground Control Point Location (지상기준점 선점 위치에 따른 DSM 높이 정확도 분석)

  • Lee, Jong Phil
    • Journal of Cadastre & Land InformatiX
    • /
    • v.51 no.1
    • /
    • pp.125-136
    • /
    • 2021
  • Recently, Unmanned Aerial Vehicle utilization and image processing technology for remote sensing have diversified remarkably with Orthophoto and Digital Surface Model. In particular, It uses more application fields such as spatial information analysis and hazardous areas as well as land surveying. This study analyses the accuracy of the coordinate on Orthophoto and DSM height on slope area with high and low differences by using UAV images. As the result of this study, in the case of GCP on 2D orthophoto, the location error was not produced significantly. The vertical position of the DSM showed the highest accuracy when the height difference between GCPs is under 30m(RMSEZ=0.07m). The location of the GCPs was divided into approximately 10m, 20m, 30m, and 40m with analysis for each of the eight points of GCP and inspection points in general. This study expects that producing both horizontal accuracy of Orthophoto and vertical accuracy of DSM using UAV on the sloped area which similar to this research area will help in spatial information fields.

TIN Based Geometric Correction with GCP

  • Seo, Ji-Hun;Jeong, Soo;Kim, Kyoung-Ok
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.3
    • /
    • pp.247-253
    • /
    • 2003
  • The mainly used technique to correct satellite images with geometric distortion is to develop a mathematical relationship between pixels on the image and corresponding points on the ground. Polynomial models with various transformations have been designed for defining the relationship between two coordinate systems. GCP based geometric correction has peformed overall plane to plane mapping. In the overall plane mapping, overall structure of a scene is considered, but local variation is discarded. The Region with highly variant height is rectified with distortion on overall plane mapping. To consider locally variable region in satellite image, TIN-based rectification on a satellite image is proposed in this paper. This paper describes the relationship between GCP distribution and rectification model through experimental result and analysis about each rectification model. We can choose a geometric correction model as the structural characteristic of a satellite image and the acquired GCP distribution.

A New Spatial Interpolation Method of GCP Datum of Remote Sensing Images

  • Ren, Liucheng
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1365-1367
    • /
    • 2003
  • A new method, called dynamic space projection method that is suitable to remote sensing image, is adopted to encrypt GCP (ground control point) datum in this paper. The essence of this method is to encrypt enough GCP by using a few known GCP in order to realize the precise correction of remote sensing image. By making use of the method to the GCP datum encrypting and precise geometric correction of TM image and SPOT image, the precision of encrypted GCP is less than one pixel, the precision of precisely corrected image is less than two pixels.

  • PDF

The Study of the Geometric Structure Optimization for the Stereo X-ray Inspection System Using the Calibration (Calibration을 통한 스테레오 X-ray 검색장치의 기하구조 최적화 연구)

  • Hwang, Young-Gwan;Lee, Nam-Ho;Lee, Seung-Min;Park, Jong-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3422-3427
    • /
    • 2010
  • In this paper, we presents a sensor calibration technique using stereo X-ray images to provide efficient inspection of fast moving cargo objects. Stereo X-ray scanned images are acquired from a specially designed equipment which consists of a X-ray source, dual-linear array detector, and a conveyor system. Dual detector is installed so that rectified stereo X-ray images of objects are acquired. Using the stereo X-ray images, we carry out a sensor calibration to find the correspondences between the images and reconstruct 3-D shapes of real objects. Using the Image acquired from the stereo detectors with varying distances, we calculated the GCP(ground control point)of the image. And we figure out the error by comparing calculated GCP and GCP of the real object. The experimental results show the proposed technique can enhance the accuracy of stereo matching and give more efficient visualization for cargo inspection image.

A Study on the GCP Disposition of KOMPSAT-1

  • Seo, Dong-Ju;Jang, Ho-Sik;Lee, Jong-Chool
    • Korean Journal of Geomatics
    • /
    • v.1 no.1
    • /
    • pp.27-33
    • /
    • 2001
  • There are invisible wars going on to preoccupy required satellite information for national defense, industry and living in the out space. Therefore, Korea has developed and successfully launched KOMPSAT (Korea Multi-Purpose SATellite), Korea's first multi-pur pose applications satellite, on December 21, 1999. In the course of geometric corrections with KOMPSAT-1 images, an accuracy of GCP collections is analyzed by the coordinated of digital map respective and an accuracy according to the GCP disposition was analyzed as well. For disposition of GCP, it turned out that even distribution on the whole screen contributes to promote accuracy. These are expected to used as basic data in putting the KOMPSAT-1 geometric correction into practical use.

  • PDF

Approaches for Automatic GCP Extraction and Localization in Airborne SAR Images and Some Test Results

  • Tsay, Jaan-Rong;Liu, Pang-Wei
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.360-362
    • /
    • 2003
  • This paper presents simple feature-based approaches for full- and/or semi-automatic extraction, selection, and localization (center-determination) of ground control points (GCPs) for radargrammetry using airborne synthetic aperture radar (SAR) images. Test results using airborne NASA/JPL TOPSAR images in Taiwan verify that the registration accuracy is about 0.8${\sim}$1.4 pixels. In c.a. 30 minutes, 1500${\sim}$3000 GCPs are extracted and their point centers in a SAR image of about 512 ${\times}$ 512 pixels are determined on a personal computer.

  • PDF

Accuracy Analysis According to the Number of GCP Matching (지상기준점 정합수에 따른 정확도 분석)

  • LEE, Seung-Ung;MUN, Du-Yeoul;SEONG, Woo-Kyung;KIM, Jae-Woo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.3
    • /
    • pp.127-137
    • /
    • 2018
  • Recently, UAVs and Drones have been used for various applications. In particular, in the field of surveying, there are studies on the technology for monitoring the terrain based on the high resolution image data obtained by using the UAV-equipped digital camera or various sensors, or for generating high resolution orthoimage, DSM, and DEM. In this study, we analyzed the accuracy of GCP(Ground control point) matching using UAV and VRS-GPS. First, we used VRS-GPS to pre-empt the ground reference point, and then imaged at a base altitude of 150m using UAV. To obtain DSM and orthographic images of 646 images, RMSE was analyzed using pix4d mapper version As a result, even if the number of GCP matches is more than five, the error range of the national basic map(scale : 1/5,000) production work regulations is observed, and it is judged that the digital map revision and gauging work can be utilized sufficiently.

Simulation of JERS-1 SAR Images with Map Information

  • Sato, Yuko;Sakurai Amano, Takako;Takagi, Mikio;Kobayashi, Shigeki;Fujii, Naoyuki
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.207-212
    • /
    • 1998
  • It is not easy to identify a ground control point (GCP) or even locate its vicinity from a SAR image. Although simulated SAR images may be useful to interpret mountain areas, they are not useful in flat areas because they do not show ground coverage or key features such as rivers, lakes and roads. In this study, we developed a method to simulate SAR images integrating geographical features to DEM to facilitate to locate ground control features from SAR images.

  • PDF

Accuracy Comparison of Direct Georeferencing and Indirect Georeferencing in the Mobile Mapping System

  • Bae Sang-Keun;Kim Byung-Guk;Sung Jung-Gon
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.656-660
    • /
    • 2004
  • The Mobile Mapping System is an effective method to acquire the position and image data using vehicle equipped with the GPS (Global Positioning System), IMU (Inertial Measurement Unit), and CCD camera. It is used in various fields of road facility management, map update, and etc. In the general photogrammetry such as aerial photogrammetry, GCP (Ground Control Point)s are needed to compute the image exterior orientation elements (the position and attitude of camera). These points are measured by field survey at the time of data acquisition. But it costs much time and money. Moreover, it is not possible to make sufficient GCP as much as we want. However Mobile Mapping System is more efficient both in time and money because it can obtain the position and attitude of camera at the time of photographing. That is, Indirect Georeferencing must use GCP to compute the image exterior orientation elements, but on the other hand Direct Georeferencing can directly compute the image exterior orientation elements by GPS/INS. In this paper, we analyze about the positional accuracy comparison of ground point using the Direct Georeferencing and Indirect Georeferencing.

  • PDF

A Study on the Extraction of Linear Features from Satellite Images and Automatic GCP Filing (위성영상의 선형특징 추출과 이를 이용한 자동 GCP 화일링에 관한 연구)

  • 김정기;강치우;박래홍;이쾌희
    • Korean Journal of Remote Sensing
    • /
    • v.5 no.2
    • /
    • pp.133-145
    • /
    • 1989
  • This paper describes an implementation of linear feature extraction algorithms for satellite images and a method of automatic GCP(Ground Control Point) filing using the extracted linear feature. We propose a new linear feature extraction algorithm which uses magnitude and direction information of edges. The result of applying the proposed algorithm to satellite images are presented and compared with those of the other algorithms. By using the proposed algorithm, automatic GCP filing was successfully performed.