• Title/Summary/Keyword: Groove Design

Search Result 263, Processing Time 0.024 seconds

A Study on Shape Optimization for Seal Groove of Disc Caliper using Finite Element Method and Taguchi's Method (유한요소해석과 다구찌 방법에 의한 디스크 캘리퍼 씰 홈의 형상 최적화에 관한 연구)

  • Kim, Jin-Han;Kim, Soo-Tae
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.1
    • /
    • pp.88-94
    • /
    • 2006
  • A typical disk brake system consists of caliper housing, piston, seal and two pads etc. The configuration of seal groove, dimension of piston and seal, and seal material properties are important ones for brake performance, as these affect the retraction of piston. The rubber seal is designed to perform dual functions of sealing the brake oil at brake-applied and retracting the caliper piston at brake-released. In this paper, the seal stress is analyzed using Finite Element Method and experiment is conducted by Taguchi's Method. We attempt to quantify the critical design factors in the seal groove and evaluate their impact on some of brake performance factors. The investigation obtained from this study can not only enhance the seal groove design optimization, but also reduce product prototype testing and development time.

Fabrication of the Micro-structured DVD-RAM Substrates (미세 형상을 갖는 DVD-RAM 기판의 성형에 관한 연구)

  • 문수동
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.167-170
    • /
    • 2000
  • Recently the sub-micron structured substrates of 0.74 ${mu}ell$ track pitch and 800 $\AA$groove depth are required for DVD-RAM and the track pitch is expected to be narrower as the need for the information storage density is getting higher. For the accurate replication of the land-groove structure in the stamper to the plastic substrates it is important to control the injection -compression molding process such that the integrity of the replication for the land-groove structure is maximized. in the present study polycarbonate substrates were fabricated by injection comression molding and the land-groove structure regarded as one of mold temperature and the compression pressure on the integrity of the replication were examined experimentally. An efficient design methodology using the response surface method (RSM) the central composite design(CCD) technique and the analysis-of-variance (ANOVA) was developed to obtain the optimum processing conditions which maximize the integrity of the replication with a limited number of experiments.

  • PDF

Analytical Study on the Optimized Design of Engine Bearings for a Passenger Car (자동차용 엔진베어링의 최적설계에 관한 해석적 연구)

  • Kim, Chung-Kyun;Kim, Han-Goo
    • Tribology and Lubricants
    • /
    • v.25 no.1
    • /
    • pp.1-6
    • /
    • 2009
  • In this paper, the minimum oil film thickness and the maximum oil film pressure of engine bearings have been analyzed by using the elastohydrodynamic theory and Taguchi's design method as functions of the oil groove width, oil hole diameter, oil hole position, and oil supply pressure. The optimized design of the engine bearing f3r an automotive Diesel engine is very important for supporting a load-carrying capacity due to gas pres-sures from the engine combustion chamber and inertia forces of the piston. The optimized design data of engine bearings indicated that the optimized oil groove width and an oil diameter of a engine bearing are 8mm at the speed of 2,000 rpm for a given 4-cylinder Diesel engine. Thus, the oil groove oil groove and an oil hole for high performances of an engine bearing may be considered as major design parameters compared to other design factors, which are strongly related to the minimum oil film thickness and the maximum oil pressure distribution of the engine oil.

Lubrication Performance Analyses of Spiral Groove Dry Gas Seals - Part I: EE Analysis and Basic Performance Evaluation (스파이럴 그루브 드라이 가스 시일의 윤활 성능해석 - Part I: 유한요소 해석 및 기본 성능평가)

  • Lee An Sung;Yang Jae-Hun;Choi Dong-Hoon
    • Tribology and Lubricants
    • /
    • v.20 no.2
    • /
    • pp.58-67
    • /
    • 2004
  • In this study a general Galerkin FE lubrication analysis method for the compressible Reynolds equation in cylindrical coordinates is presented. Then, the method is applied for analyzing lubrication performances of spiral groove dry gas seals. The effects of toning and number of groove on performance indices are evaluated at low and high rotating speeds: 3,600 and 15,000 rpm. Results show that, for the primary design consideration performances such as the opening force and axial and angular stiffnesses, a negative or small coning and a large number of groove are preferred.

An Optimum Design of Herringbone Grooved Journal Bearings for Spindle Motor of Hard Disk Drive System (HDD 스핀들용 빗살무늬 저널베어링의 최적설계)

  • ;Y. Muraki;M. Tanaka
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.530-532
    • /
    • 2002
  • This paper presents an optimum design of herringbone grooved journal bearing for spindle motor of hard disk drive (HDD) system. In addition to the conventional “rectangular” groove, various groove profiles are designed. The stiffness and damping coefficients of the oil film and frictional torque are calculated and compared for tile various groove profiles. The “circular”, “valley”, and “reversed saw tooth” grooves do not produce high direct stiffness, since they partly increase the groove depths in the direction of lubricant flow, causing to reduce the pumping action of the bearing. The maximum direct stiffness can be obtained by the “rectangular”, “saw tooth”, and “step” grooves. With the same cross sectional area of the grooves, these three grooves have the same maximum stiffness, damping coefficients, and frictional torque. Among these recommendable grooves, the saw tooth groove may keep its original profile for long, enduring metal-to-metal contact during startup and shutdown.

  • PDF

Numerical Analysis on Performance Improvement for Wind Blade by the Groove (Groove를 활용한 풍력블레이드 성능향상을 위한 수치적 연구)

  • Hong, Cheol-Hyun;Seo, Seong-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.475-482
    • /
    • 2011
  • This study, a basic study to improve aerodynamic characteristic of a wind blade, explored through CFD how much the lift to drag ratio improves according to the shape of groove formed on the surface of airfoil NACA0015. This study found out that the ratio improves by 8.7% when the ratio between boundary layer(${\delta}$) and the depth of groove(h), the ratio between the depth of groove(h) and the width of groove(d) and the ratio between the length(p) from one groove to the other and the width of groove are 1.1, 0.1 and 1.2 respectively. The number of grooves is two. It was also confirmed that the improvement of the lift to drag ratio is maintained after certain angle of attack.

Investigation of Stress Concentration and Fatigue Life of Axle Drive Shaft with Relief Groove (완화 홈이 가공된 액슬구동축의 응력집중 및 피로수명 평가)

  • Shin, Jae-Myung;Han, Seung-Ho;Han, Dong-Sub
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.1
    • /
    • pp.88-94
    • /
    • 2012
  • An axle drive shaft with double joint shaft, cross kit and yoke has an important role by transferring power and changing steering angle between axle and wheel in power train system. It has been used widely in the heavy machinery requiring a high reliability in the power train system. At fatigue failures of the axle drive shaft with the long span, a relatively high stress concentration at a snap ring groove on the drive shaft brings to significant fatigue damages under repeated loading condition. As Peterson's suggestions on this study, a relief groove in the vicinity of the snap ring groove is applied by decreasing the stress concentration and improving the fatigue life of axle drive shaft. By using FEM analysis, the decreasing effect of the stress concentration and extended fatigue life are due to the change of design parameters related with size and location of the relief groove. The relief groove with the design parameters such as d/b=2.0 and r/h=1.2 enables to decrease the stress concentration of 22.3% and increase the fatigue life more than 3 times by comparing with no relief groove application.

Geometric Modeling and Five-axis Machining of Tire Master Models

  • Lee, Cheol-Soo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.3
    • /
    • pp.75-78
    • /
    • 2008
  • Tire molds are manufactured by aluminum casting, direct five-axis machining, and electric discharging machining. Master models made of chemical wood are necessary if aluminum casting is used. They are designed with a three-dimensional computer-aided design system and milled by a five-axis machine. In this paper, a method for generating and machining a tire surface model is proposed and demonstrated. The groove surfaces, which are the main feature of the tire model, are created using a parametric design concept. An automatically programmed tool-like descriptive language is presented to implement the parametric design. Various groove geometries can be created by changing variables. For convenience, groove surfaces and raw cutter location (CL) data are generated in two-dimensional drawing space. The CL data are mapped to the tread surface to obtain five-axis CL data to machine the master model. The proposed method was tested by actual milling using the five-axis control machine. The results demonstrate that the method is useful for manufacturing a tire mold.

Design Optimization of Deep Groove Ball Bearing with Discrete Variables for High-Load Capacity (이산 설계변수를 포함하고 있는 깊은 홈 볼 베어링의 고부하용량 설계)

  • Yun, Gi-Chan;Jo, Yeong-Seok;Choe, Dong-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.8 s.179
    • /
    • pp.1940-1948
    • /
    • 2000
  • A design method for maximizing fatigue life of the deep groove ball bearing without enlarging mounting space is proposed by using a genetic algorithm. The use of gradient-based optimization methods for the design of the bearing is restricted because this design problem is characterized by the presence of discrete design variables such as the number of balls and standard ball diameter. Therefore, the design problem of rolling element bearings is a constrained discrete optimization problem. A genetic algorithm using real coding is used to efficiently find the optimum discrete design values. To effectively deal with the design constraints, a ranking method is suggested for constructing a fitness function in the genetic algorithm. Constrains for manufacturing are applied in optimization scheme. Results obtained for several 63 series deep groove ball bearings demonstrated the effectiveness of the proposed design methodology by showing that the average basic dynamic capacities of optimally designed bearings increased about 9-34% compared with the standard ones.

A Study on the Mechanical Mechanism According to the Groove Shape of T-welded Joint (T-joint 용접부의 형상에 따른 역학적 메카니즘에 관한 연구)

  • 방한서;김종명
    • Journal of Welding and Joining
    • /
    • v.17 no.6
    • /
    • pp.53-61
    • /
    • 1999
  • The use of thick plate in increasing in recent years due to the rapid expansion of chemical plants, nuclear plants, ships and other industrial plants. Welding is the most popular joining techniques employed in manufacturing industrial machineries and structures. Normally, Groove shapes are prepared according to appropriate rules and regulations such as KS, JIS, AWS, LR, DNV and etc. for various thicknesses of plate. However those groove angles tend to be too large. As a result of large groove angle, residual stress, deformation of material and strength reduction is obtained. Therefore, the reliability and safety of structures and machinery tend to be decreasing. Therefore, in this paper, theoretical as well as experimental study are carried out to find optimum groove shapes for T-welded joint of mild steel. The test specimen are made in same condition with simulation model. Welding residual stresses measurement by sectional cutting method. ⅰ) The mechanical difference for change the thickness of plate and groove angle are not appeared. ⅱ) In a mechanical point of view minimum preparation angle(40°) is more suitable than maximum groove angle(60℃). ⅲ) The measurement value and distribution of welding residual stresses are not effected largely by groove angle. It is mechanical restraint that mainly affect welding residual stresses distribution. In mechanical point of view minimum groove angle is more suitable than maximum groove angle. Therefore, it is appropriate to minimize the size of groove shape in strength and safety.

  • PDF