• Title/Summary/Keyword: Grinding force

Search Result 232, Processing Time 0.027 seconds

A study on the Grinding Ability Evaluation of Grinding Wheel made in Korea and Japan (한, 일산 연삭 숫돌의 연삭 성능 평가에 관한 연구)

  • 강재훈
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.5 no.1
    • /
    • pp.51-57
    • /
    • 1996
  • Although the system for establishing grinding operation standards mainly depends on the simulation method, it is desirable to obtain highly reliable grinding data and to develop experimental technology, And, it also needs to modify the simulation models if the simulation results do not coincide with special situation due to the difference of grinding machine, wheels and workpiece materials. If simple tests are carried out to evaluate these specificity, the reliability and utility of the system can be raised higher. Therefore, it is required for evaluating wheel ability and confirming the validity of the experimental methods as well as the possibility of exchanging the experimental data between Korea and Japan to preform several kinds of grinding experiments. In this paper, experiments of cylindrical plunge grinding were conducted using the wheels of the same specification made by three typical grinding wheel manufacturers both in Korea and Japan, respectively. The grinding power consumption grinding force, the ground surface roughness, and wheel wear were measured under the same dressing the grinding conditions. The average value and standard deviation of the experiment results were calculated to compared the grinding performance of the wheels made in both countries. The experiment results show that the grinding wheel performance of Korea's is nearly equal to that of Japan's for general purpose of grinding operation. In conclusion, it is possible to exchange the experimental data between Korea and japan.

  • PDF

Appling of Force Control of the Robotic Sweeping Machine for Grinding (연마작업을 위한 로봇형 연마기의 힘제어 적용)

  • Jin, Taeseok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.2
    • /
    • pp.276-281
    • /
    • 2014
  • In this research, we describe a force feedback control for industrial robots has been proposed as a system which is suitable to work utilizing pressure sensitive alternative to human. Conventionally, polished surface of the workpiece are recognized, chamfer ridge, machining processes such as deburring, and it is most difficult to automate because of its complexity, has been largely dependent on the human. To aim to build automatic vacuum system robotic force control was gripping the grinding tool, the present study we examined the adaptability to the polishing process to understand the characteristics of the control system feedback signal obtained from the force sensor mainly. Furthermore, as a field, which holds the key to the commercialization, I went ahead with the application to robotic sweeping machine. As a result, the final sweeping utilizing a robot machine to obtain a very good grinded surface was revealed.

Grindability Evaluation of Super-Abrasives for Surface Carburized and Heat Treated Materials (표면침탄 열처리강의 초입자연삭 가공시 연삭성 평가)

  • 이용철;김경년;곽재섭
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.11
    • /
    • pp.55-63
    • /
    • 2003
  • In this study, an experimental research of grinding characteristics using super-abrasives for surface carburized and heat treated SCM415 materials, which were usually used to make a linear motion guide block and were comparatively hard-to-machine materials, was carried out. In order to conduct a high efficiency and a accuracy grinding of such materials, grinding processes using CBN (Cubic boron nitride) and 38P grinding wheels have been attempted on a surface grinding machine. The grindability according to each grinding conditions was evaluated by means of a grinding force, a surface roughness and a residual stress. The experimental methods and results were presented in this paper. And also, from a proposed truing method the CBN wheels that combined a copper and a break truer gave a full scope to the wheel's performance.

Grinding Characteristics of Vitrified-bond CBN Wheel (비트리파이드 본드 CBN 휠의 연삭특성)

  • 원종호;김건희;박상진;안병민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.787-792
    • /
    • 2000
  • Ultra-abrasives such as diamond and CBN have used to maintain accuracy and form deviation for superalloy etc. This study contains the dry cylindrical grinding of metals with Vitrified-bond CBN wheel. For various conditions of grinding speed, workpiece speed, grinding depth and feed speed of table, the grinding resistance, the surface roughness, and the material removal are measured and discussed. The results are as follows.

  • PDF

Mechanics of the Grinding by Hemispheric Type Electroplated CBN Wheel (반구형 전착 CBN 휠에 의한 연삭가공의 연삭력 해석)

  • Seo, Young-Il;Choi, Hwan;Lee, Jong-Chan;Jung, Sun-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.6
    • /
    • pp.153-158
    • /
    • 1998
  • In this paper, a theoretical analysis is presented on the mechanics of the grinding by hemispheric type electroplated CBN wheel. The grinding forces acting on a single grain were calculated from its geometry by assuming the abrasive grain is spherical. Then. the total grinding forces were obtained by estimating the number of acting abrasive grains and the area of contact. The model includes the grinding variables such as wheel speed. feed speed. depth of cut, and grinding wheel positions. Experiments were also carried out to compare with the analytical results. The experimental results were found to be in good agreement with the analytical ones.

  • PDF

A Study on High Efficiency Dressing of Diamond Grinding Wheel (다이야몬드 숫돌의 고능률 Dressing 에 관한 연구)

  • Choi, Kyoung-Il;Kang, Jae-Hoon;Jung, Yoon-Gyo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.8 no.2
    • /
    • pp.106-113
    • /
    • 1991
  • A diamond grinding wheel is generally used to grind hard and brittle materials, such as advanced ceramics. It is, however, quite difficult to dress a diamond grinding wheel efficiently because of its high degree of hardness. In this study, some investigations are carried out to increase dressing efficiecy of resinoid bonded diamond grinding wheel. Dressing forces are measured over a wide range of dressing conditions, and SEM observation of a grinding wheel is carried out. Special attention is paid to comparison between stick method and rotary brake method. Results obtained in this study provide useful information determining reguired dressing time, and for choosing efficient dressing condition for diamond grinding wheel.

  • PDF

Grinding Characteristic of Advanced Ceramics (파인세라믹의 연삭가공특성)

  • Jung, Yoon-Gyo;Kang, Jae-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.7 no.2
    • /
    • pp.105-112
    • /
    • 1990
  • Advanced ceramics have some excellent properities as the material for the mechanical component. It is, however, very difficult to grind ceramics with high efficiency because of their high strength, hardness and brittleness. In this paper, some experiments are carried out to find the basic grinding characteristic of advanced ceramics. Representative advanced ceramics, such as AL/sub 2/ O/sub 3/, ZrO/sub 2/, SiC and Si/sub 3/N/sub 4/and ground with diamond wheels. Special attention is paid to comparison between the conventional and creep feed grinding. Results obtained in this study provide some useful informations to attain the high efficiency grinding of advanced ceramics.

  • PDF

A Study on the Surface Grinding Characteristic of Engineering Cramics (엔지니어링 세라믹스의 평면 연삭 가공 특성에 관한 연구)

  • Kang, J.H.;Heo, S.J.;Kim, W.L.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.6
    • /
    • pp.38-49
    • /
    • 1994
  • In this study, grindability of some representative engineering ceramics are experimentally investigated using resin bond diamond wheel with conventional surface grinding machine, and proper grinding conditions which can be obtained from various experimental results are established also for mechanical components which are proper to domestic circumstances with high reliability. And through the results of experiment, it is confirmed that grinding energies of the ceramics, especially in the case of $Al_2O_3$, are lower than steel with same machining condition in the conventional grinding because of their fine-brittle fracture mode type removal process, though the ceramics are well-known to unmachinable materials. And moreover, the total pass numbers needed for spark-out process to be completed are depend on their mechanical properties because that grinding stiffness is different from each other. The grinding force, ginding power and ground surface roughness are also measured and compared. Furthermore, the experiments carried out in this study, some useful results are obtained with can guide to grind engineering ceramics with conventional surface grinding machine.

  • PDF