• Title/Summary/Keyword: Grinding Condition

Search Result 219, Processing Time 0.026 seconds

Evaluation of Dewatering of Cellulose Nanofibrils Suspension and Effect of Cationic Polyelectrolyte Addition on Dewatering (셀룰로오스 나노피브릴 현탁액의 탈수성 평가 및 양이온성 고분자전해질 투입의 영향)

  • Ryu, Jaeho Ryu;Sim, Kyujeong;Youn, Hye Jung
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.46 no.6
    • /
    • pp.78-86
    • /
    • 2014
  • Since cellulose nanofibrils (CNF) has large specific surface area and high water holding capacity, it is very difficult task to remove water from the CNF suspension. However, dewatering of CNF suspension is a prerequisite of following processes such as mat forming and drying for the application of CNF. In this study, we evaluated the drainage of cellulose fibers suspension under vacuum and pressure conditions depending on the number of grinding passes. Also, the effect of the addition of cationic polyelectrolyte on dewatering ability of CNF suspension was investigated. Regardless of dewatering condition, the total drained water amount as well as the drainage rate were decreased with an increase in the number of grinding passes. Pressure dewatering equipment enables us to prepare wet CNF mat with relatively higher grammage. The cationic polyelectrolytes improved the dewatering ability of CNF suspension by controlling the zeta potential of CNF. The fast drainage was obtained when CNF suspension had around neutral zeta potential.

Development of Ceramic Roll Materials for Food Grinding Processing and Evaluation of Mechanical Behavior (식품분쇄용 세라믹 롤 재료 개발과 기계적 특성평가)

  • 강위수
    • Journal of Biosystems Engineering
    • /
    • v.26 no.1
    • /
    • pp.47-56
    • /
    • 2001
  • In order to prevent the possibility of mixing of metal powder during food grinding processing with the metal roll mill this study was conducted to develope the materials of ceramics roll as a substitute of gray cast iron mill. Since the ceramics is brittle material and can be broken easily by a crack, it was needed to develope engineering ceramics roll materials with high elastic modulus and fracture toughness. Adding 0∼50 wt% Al$_2$O$_3$as densification additives to porcelain body material and forming the ceramics an different condition, mechanical properties were evaluated. The material structure’s densification process was analyzed by SEM and XRD. The evaluation of the mechanical properties of ceramics roll materials were compared and analyzed by non-destructive test using Young’s modulus and destructive test using 3-point bending strength and fracture toughness. The results showed several correlative results. Porcelain body material with 40 wt% Al$_2$O$_3$content heated at 1,200$\^{C}$ for 5h was high bulk density of 2.77, Young’s modulus of 118.4Gpa, 3-point bending strength of 137 MPa and fracture toughness of 2.88 MPa$.$m$\^$$\sfrac{1}{2}$/ . After analyzing the relationship between non-destructive test and destructive test, the coefficient of determination was more than 0.9. Therefore, the evaluation of non-destructive test by ultrasonic was turned out to be feasible in evaluating the mechanical properties of ceramics.

  • PDF

Particle Morphology via Change of Ground Particle for Various Experimental Conditions During a Grinding Process by Three Kinds of Media Mills (세 가지 매체형 분쇄기를 이용한 분쇄공정에서 다양한 실험 조건에 대한 입자형상변화)

  • Sakuragi, Shiori;Bor, Amgalan;Lee, Jehyun;Choi, Heekyu
    • Particle and aerosol research
    • /
    • v.11 no.1
    • /
    • pp.9-19
    • /
    • 2015
  • This study investigated the effects of ball mill operation condition on the morphology of raw powders in the dry-type milling process using three types of ball mills traditional ball mill, stirred ball mill and planetary ball mill. Furthermore, since spherical powders offer the best combination of high hardness and high density, the optimum milling condition to produce sphere-shaped powders was studied. The applied rotation speed ranged from 200rpm (low rotation speed) to 700rpm (high rotation speed). The used ball size ranged from 1mm to 5mm. The metal powder morphology was studied using SEM, XRD and PSA. The aimed spherical powders could be obtained under the optimum experimental conditions: traditional ball mill(200rpm, 1mm ball), planetary ball mill (500rpm, 1mm ball) and also planetary ball mill (700rpm, 1 and 3 mm ball). The results show to the development of new material using spherical type copper powder/CNT composites for air-craft and automotive applications.

A Study on Thermal Flow Analysis in Grinding Disc Assembly for Disintegration of Secondary Battery Materials (이차전지 원료 해쇄용 그라인딩 디스크 어셈블리 내 열 유동 해석에 관한 연구)

  • Dong-Min Yun;Yong-Han Jeon
    • Design & Manufacturing
    • /
    • v.16 no.4
    • /
    • pp.34-39
    • /
    • 2022
  • Sustained economic development around the world is accelerating resource depletion. Research and development of secondary batteries that can replace them is also being actively conducted. Secondary batteries are emerging as a key technology for carbon neutrality. The core of an electric vehicle is the battery (secondary battery). Therefore, in this study, the temperature change by the heat source of the hammer and the rotational speed (rpm) of the abrasive disc of the Classifier Separator Mill (CSM) was repeatedly calculated and analyzed using the heat flow simulation STAR-CCM+. As the rotational speed (rpm) of the abrasive disk increases, the convergence condition of the iteration increases. Under the condition that the inlet speed of the Classifier Separator Mill (CSM) and the heat source value of the disc hammer are the same, the disc rotation speed (rpm) and the hammer temperature are inversely proportional. As the rotational speed (rpm) of the disc increases, the hammer temperature decreases. However, since the wear rate of the secondary battery material increases due to the strong impact of the crushing rotational force, it is determined that an appropriate rpm setting is necessary. In CSM (Classifier Separator Mill), it is judged that the flow rate difference is not significantly different in the direction of the pressure outlet (Outlet 1) right above the classifier wheel with the fastest flow rate. Because the disc and hammer attachment technology is adhesive, the attachment point may deform when the temperature of the hammer rises. Therefore, it is considered necessary to develop high-performance adhesives and other adhesive technologies.

Development of Tool and Optimal Cutting Condition Selection Program (최적 절삭 조건을 고려한 절삭공구 선정 프로그램 개발)

  • Shin, Dong-Oh;Kim, Young-Jin;Ko, Sung-Lim
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.26 no.2
    • /
    • pp.165-170
    • /
    • 2000
  • In order to perform a successful material cutting process, the operators are to select the suitable machining tools and cutting conditions for the cutting environment. Up to now, this has been a complicated procedure done by the data in the tool manufacturers' paper catalog and the operator's experiencial knowledge, so called heuristics. This research is motivated by the fact that using computer techniques in processing vast amount of data and information, the operator can determine the tool and cutting condition easily. In the developed program, the selection of milling cutter, insert, and components are combined to provide optimal cutting speed, depth of cut, feed rate, rpm, and power. This program also provides the selection routine for end mill, drilling, turning, and grinding where the suitable tools are selected by workpiece, holder type, cut type, and insert shape.

  • PDF

Ultra-precision Grinding Machining of Glass Rod Lens Core With Aspheric (비구면 Glass Rod 렌즈 금형의 초정밀 연삭가공)

  • Kim, Woo-Soon;Kim, Dong-Hyun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.1
    • /
    • pp.76-82
    • /
    • 2009
  • To obtain the surface roughness with nano order, we need a ultra-precision machine, cutting condition, and materials. In this paper, the cutting condition for getting nano order smooth surface of core have been examined experimentally by the ultra-precision machine and diamond wheels. The effects of the cutting velocity, the feed rate and depth of cut on the surface roughness were studied. And also, the surface roughness was measured by the Form Talysurf series PGI 840. The champion data of developed core was surface roughness Rmax 24.6nm, figure accuracy Rmax 68.9nm.

Effect of Sample Preparations on Prediction of Chemical Composition for Corn Silage by Near Infrared Reflectance Spectroscopy (시료 전처리 방법이 근적외선분광법을 이용한 옥수수 사일리지의 화학적 조성분 평가에 미치는 영향)

  • Park Hyung-Soo;Lee Jong-Kyung;Lee Hyo-Won;Hwang Kyung-Jun;Jung Ha-Yeon;Ko Moon-Suck
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.26 no.1
    • /
    • pp.53-62
    • /
    • 2006
  • Near infrared reflectance spectroscopy (NIRS) has been increasingly used as a rapid, accurate method of evaluating some chemical compositions in forages. Analysis of forage quality by NIRS usually involves dry ground samples. Costs might be reduced if samples could be analyzed without drying or grinding. The objective of this study was to investigate effect of sample preparations and spectral math treatments on prediction ability of chemical composition for corn silage by NIRS. A population of 112 corn silage representing a wide range in chemical parameters were used in this investigation. Samples of com silage were scanned at 2nm intervals over the wavelength range 400-2500nm and the optical data recorded as log l/Reflectance(log l/R) and scanned in overt-dried grinding(ODG), liquid nitrogen grinding(LNG) or intact fresh(IF) condition. Samples were analysed for neutral detergent fiber(NDF), acid detergent fiber(ADF), acid detergent lignin(ADL), crude protein(CP) and crude ash content were expressed on a dry-matter(DM) basis. The spectral data were regressed against a range of chemical parameters using modified partial least squares(MPLS) multivariate analysis in conjunction with four spectral math treatments to reduce the effect of extraneous noise. The optimum calibrations were selected on the basis of minimizing the standard error of cross validation(SECV). The results of this study show that NIRS predicted the chemical parameters with very high degree of accuracy(the correlation coefficient of cross validation$(R^2cv)$ range from $0.70{\sim}0.95$) in ODG. The optimum equations were selected on the basis of minimizing the standard error of prediction(SEP). The Optimum sample preparation methods and spectral math treatment were for ADF, the ODG method using 2,10,5 math treatment(SEP = 0.99, $R^2v=0.93$), and for CP, the ODG method using 1,4,4 math treatment(SEP = 0.29. $R^2v=0.91$).

Heat Treatment for Improvement of Hardness Uniformity of Standard Hardness Blocks (경도 기준편의 경도 균일성 향상을 위한 열처리)

  • Hahn, J.H.;Hwang, N.M.;Kim, J.J.;Moon, H.G.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.2 no.2
    • /
    • pp.33-37
    • /
    • 1989
  • In order to improve hardness uniformity of standard-hardness blocks. experimental procedure was designed using Taguchi Method. For this purpose the following factors were studied: austenitizing temperature, tempering condition, grinding condition, subzero treatment, lapping time, $15{\mu}m$ polishing time, final polishing time. These factors were processed and then ten hardness values were measured on each specimen. SN (signal to noise) ratio for each condition was calculated with standard variations of these values. Finally, from the calculated value of ANOVA on SN ratios, the lapping time was found to be the main factor Better uniformity with longer lapping time implies that residual stress that was formed after quenching is a dominent parameter that affects on the uniformity of hardness. Therefore, step-quenching method was adapted to minimize the residual stress. By this modification of quenching procedure, the hardness uniformity was improved remarkably and the yield ratio was increased from 55% to 88%.

  • PDF

Changes in Extraction Efficiency of Pine Needles depending on Extraction Method and the Condition (추출 방법과 조건에 따른 소나무 지엽 추출효율 변화)

  • Kim, Dong Sung;Kim, Hyung Min;Sung, Yong Joo;Kang, Seog Goo;Kang, Ho-Yang;Lee, Jun-Woo;Kim, Se Bin;Park, Gwan-Soo
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.48 no.1
    • /
    • pp.93-99
    • /
    • 2016
  • The extraction efficiency depending on the extracting methods and the conditions of extraction was investigated. The common steam extraction was compared to the distillation extraction method. The effects of the samples size and the extraction time on the extract yield were also investigated by using UV-Vis spectrophotometer. One of the functional components of pine needle extract as the natural phenol base components were detected by the UV-VIS at around 235 nm wavelength range. The absorbance intensity at around 235 nm wavelength of the pine needle extract was used as the indicator of the extraction efficiency in this experiment. The distillation extraction showed the higher extract yield than the steam extraction. The grinding treatment of pine needles also resulted in the better extract performance, but the severe grinding showed a little decrease in the extract yield especially in case of the distillation extraction method. More than half of the extract was collected at the first stage of the extraction, that was the first 15 minutes in the total 60 minutes extraction.

Shear Performance of RC Beams Using Ductile Fiber Reinforced Cementitious Composite (DFRCC) (고인성 섬유 시멘트 복합재료를 사용한 RC보의 전단보강효과)

  • Eo, Seok-Hong;Son, Ki-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.9
    • /
    • pp.5844-5853
    • /
    • 2014
  • This paper presents the results of experimental investigations on the shear failure behaviors of reinforced concrete beams using ductile fiber reinforced cementitious composite (DFRCC). Total 10 RC beams of $150{\times}300{\times}1,000mm$ size were tested by 4-point bending under the displacement control. The main parameters of the experiment are surface treatment by grinding and preloading to the cracking point in the repair process. The load-displacement curves, diagonal tension cracking load, flexural cracking load, and shear strength were obtained. The test results showed that the DFRCC can be used effectively for restoring the shear strength approximately 99% to the original value under the condition that the appropriate thickness and surface treatment like grinding are assured. For further research, the specimens taken from real deteriorated structures will need to be tested after being repaired with DFRCC.