• Title/Summary/Keyword: Grinding Center

Search Result 183, Processing Time 0.024 seconds

The Change of Porosity During the Fabrication of Vitreous Bonded CBN Tools (유리질 결합 CBN공구 제조시 기공량 변화)

  • Yang, Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.9
    • /
    • pp.988-994
    • /
    • 1998
  • In the manufacturing of vitreous bonded CBN tool the porosity change associated with various processing conditions, I. e. the sintering temperature and the size and the amount of abrasive grits was observed. In the case of sintering of vitreous bond material only the specimen density reached the maximum at 950$^{\circ}C$ and then the total porosity was increased slightly with the temperature above 950$^{\circ}C$. In the sintering of a-brasive grits and the vitreous bond material together a marked increase in the total porosity was found with the temperature above 950$^{\circ}C$ Reducing the grit size at the constant volume fraction of abrasive grits showed an increase in the total porosity at whole sintering temperature. On the contrary. it was observed that increasing the volume fraction of abrasive grits with a same size showed the increased open porosity simultaneously with decreased closed porosity at whole sintering temperature.

  • PDF

Paper Properties Improvement by adding Microfibrillated Cellulose-Mineral Composites (Microfibrillated Cellulose (MFC)와 중질탄산칼슘 (GCC)로 구성된 복합충전제를 이용한 종이 물성 향상)

  • Lee, Jung Myoung
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.48 no.2
    • /
    • pp.83-90
    • /
    • 2016
  • Increasing the amount of filler in paper is of high interest for paper industry while maintaining its key sheet quality properties. In this study, a MFC-GCC composite, made through a co-grinding NBSK (Northern bleached softwood kraft) pulp with a ground calcium carbonate (Intracarb 60), was used as a strength aid in paper in order to evaluate a potential cost reduction through filler increase without sacrificing paper quality. Hand-sheets were made of NBSK and/or eucalyptus pulp by using white water recirculation in a Tappi sheet former and was compared its properties without or with MFC additions at different filler levels. It was found that the MFC-GCC composite has a large surface area compared to the fiber, allowing the formation of more hydrogen bonds in the web, thus giving natural strength to the paper. Overall results are encouraging that the MFC-GCC composite allows papermaker to reduce basis weight and maintain critical sheet properties.

Micro/Meso-scale Shapes Machining by Micro EDM Process

  • Kim Young-Tae;Park Sung-Jun;Lee Sang-Jo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.2
    • /
    • pp.5-11
    • /
    • 2005
  • Among the micro machining techniques, micro EDM is generally used for machining micro holes, pockets, and micro structures on difficult-cut-materials. Micro EDM parameters such as applied voltage, capacitance, peak current, pulse width, duration time are very important to fabricate the tool electrode and produce the micro structures. Developed micro EDM machine is composed of a 3-axis driving system and RC circuit equipped with pulse generator. In this paper, using micro EDM machine, the characteristics of micro EDM process are investigated and it is applied to micro holes, slots, and pockets machining. Through experiments, relations between machined surface and voltages and between MRR and feedrate are investigated. Also the trends of tool wear are investigated in case of hole and slot machining.

Machinability Evaluation of ${Si_3}{N_4}$-hBN Machinable Ceramics Using Experimental Design Method (실험계획법에 의한 ${Si_3}{N_4}$-hBN 머시너블 세라믹스의 절삭성 평가)

  • 장성민;임대일;조명우;조원승
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.291-295
    • /
    • 2002
  • Ceramics are very difficult-to-cut materials because of its high strength and hardness. Their machining process can be characterized by cracking and brittle fracture. Generally, ceramics are machined using traditional method such as grinding and polishing. However, such processes are generally costly and have low material removal rate. In this paper, to develop machinable ceramics those have good machinability without losing their material properties, machinability evaluations are performed by applying the experimental design method. In this paper, to evaluate the machinability of the developed ceramics, various workpieces are machined on the CNC machining center, and surface roughness are measured under predefined process parameters obtained using Taguchi method. And the experimental results are investigated to derive optimum cutting parameters for the given materials.

  • PDF

가공면의 상태 변화 측정에 관한 연구

  • Cho, Nam-Gyoo;Choi, Han-Kwang;Han, Chang-Soo;An, Yoo-Min;Park, Gyun-Myung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.2
    • /
    • pp.54-62
    • /
    • 2001
  • This paper describes a new method for measuring the changes in specific surface asperities arising from processes such as finishing, coating, wear and corrosion. In repetitive measurements, relocation device gives the same position and orientation so that specific profile can be obtained. A low-cost relocation device is designed and its performance is assessed. The error in relocation process is compensated by statistic compensation algorithm. And, a removing process of cusp by grinding is observed by the proposed method.

  • PDF

Study on Improvement of Performance by Optimizing Impeller Shape of a Coolant Pump (쿨런트 펌프 임펠러 형상 최적화를 통한 성능개선에 관한 연구)

  • Gil, Min Hyeong;Lee, Gun-Myung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.5
    • /
    • pp.48-52
    • /
    • 2019
  • A coolant pump is the device that cools processed articles and tools when using cutting, boring, and grinding machine tools and provides cutting oil for distributing or cleansing the cut chip to the worktable, processing position, etc. In particular, it consumes a large proportion of energy in machine tools, so it plays an important role in terms of energy efficiency. The purpose of this research is to optimize the shape of impeller, which directly affects performance improvements, to determine the capacity of the coolant pump. To do so, we carried out a parametric analysis with the geometric shape of the impeller as the input variable.

Mural constellations found in 5C Ara-Gaya(阿羅伽耶) tomb

  • Yang, Hong-Jin;Lee, Yong Bok;Cho, Shin-Kyu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.61.1-61.1
    • /
    • 2019
  • We report about the constellations discovered in Ara-Gaya Malisan tomb 13 of late 5th century. In December 2018, constellation-shaped grooves were newly found on the ceiling of the tomb 13 of the Ara-Gaya (42-532 CE.) polity in Haman(咸安). The tomb 13 is located at the top/center of the Malisan and is one of the largest burial mounds. Grooves were found in one of the slabs of the grave cover-stone (160 ∗ 80~60cm). The total number of grooves are 134 and each groove has a diameter of 1.5~4.0 cm. The grooves were made by pecking or grinding. From the preliminary study, we identified these grooves with traditional constellations such as 房, 心, 尾, 箕, 斗, which correspond to Scorpius and Sagittarius of modern constellations near the Milky Way. It shows that advanced astronomy also existed in Ara-Gaya tomb while star charts were painted in Goguryeo tombs. This carries great importance in studying the development and exchange of astronomy in the Korean Peninsula.

  • PDF

Failure Study for Tribological Characteristics Including with Pad, Lining and Hub disk in Vehicle Brake System (자동차 제동시스템의 패드, 라이닝, 허브디스크에 관련된 트라이볼로지적인 특성에 관한 고장사례연구)

  • Lee, Il-Kwon;Kim, Chung-Kyun;Cho, Seung-Hyun
    • Tribology and Lubricants
    • /
    • v.27 no.5
    • /
    • pp.269-274
    • /
    • 2011
  • The purpose of this paper is to study and analyze the improvement method for the failure examples including the vehicle brake system in actual field. It was verified that the indicator plate of pad wear scratched the brake disk because of wearing after displacement of non- identification parts pad. The caliper of other vehicle was installed with brake system verified the phenomenon produced groove in center point because of one side wear when the pad was not fully contacted with the rub disk by other action surface pressure and pad action condition. It verified that the crack phenomenon fatigue was produced by brake thermal deformation because of decreasing the thickness by grinding to modify the non-uniformed wear of brake disk. It verified that the friction sound was produced by the friction phenomenon because of non-uniformed contact of lining and an alien substance with inner of the drum and lining braking by crack phenomenon with brake drum surface.

Fabrication and Reliability Test of Device Embedded Flexible Module (디바이스 내장형 플렉시블 전자 모듈 제조 및 신뢰성 평가)

  • Kim, Dae Gon;Hong, Sung Taik;Kim, Deok Heung;Hong, Won Sik;Lee, Chang-Woo
    • Journal of Welding and Joining
    • /
    • v.31 no.3
    • /
    • pp.84-88
    • /
    • 2013
  • These days embedded technology may be the most significant development in the electronics industry. The study focused on the development of active device embedding using flexible printed circuit in view of process and materials. The authors fabricated 30um thickness Si chip without any crack, chipping defects with a dicing before grinding process. In order to embed chips into flexible PCB, the chip pads on a chip are connected to bonding pad on flexible PCB using an ACF film. After packaging, all sample were tested by the O/S test and carried out the reliability test. All samples passed environmental reliability test. In the future, this technology will be applied to the wearable electronics and flexible display in the variety of electronics product.

Mechanical Properties of Surface Densified PM Gears (표면치밀화 기술에 의해 제조된 소결 기어의 기계적 특성)

  • Kim, Ki-Jung;Kim, Ki-Bum;Lee, Doo-Hwan;Park, Jong-Kwan;Jeong, Dong-Guk
    • Journal of Powder Materials
    • /
    • v.19 no.3
    • /
    • pp.189-195
    • /
    • 2012
  • A novel PM (powder metallurgy) steel for automotive power-train gear components was developed to reduce manufacturing cost, while meeting application requirements. The high-density PM steel was manufactured by mixing using special Cr-Mo atomized iron powders, high-pressure compaction, and sintering. Tensile strength, charpy impact, bending fatigue, and contact fatigue tests for the PM steel were carried out and compared to conventional forged steel. Pinion gears for auto-transmission were also manufactured by helical pressing, sintering, and surface densification process. In order to evaluate the durability of the PM parts, auto-transmission durability tests were performed using dynamometer tests. Results showed that the PM steel fulfilled the requirements for pinion gears indicating suitable tensile, bending fatigue, contact fatigue strengths and improved gear tooth profile. The PM gears also showed good performance during the transmission durability tests. As a result, the PM gears showed significant potential to replace the conventional forged steel gears manufactured by tooth machining (hobbing, shaving, and grinding) processes.