• Title/Summary/Keyword: Grillage Girder Bridges

Search Result 18, Processing Time 0.037 seconds

Study on Analysis of Skew Grillage Girder Bridges by Transfer Matrix Method (전달행렬법에 의한 경사 격자교의 해석에 관한 연구)

  • Kim, Yong-Hee;Lee, Yoon-Young;Kim, Kwang-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.1
    • /
    • pp.159-170
    • /
    • 2005
  • The grid structure is parallel main girders intersected with crossgirder. It distribute the loads to adjoining main girder through the crossgirder when a girder is subjected to a load. grillage girder bridge has high load-carrying capacity, it can save materials and become more economical type of bridge. In this paper, the grillage girder bridge analysis program developed by using the transfer matrix method deals with following problems: the comparision with Leonhardt, Szabo, FEM yang and jung in the analysis of grillage girder bridges, quality of straight and curved bridges with skew angle, forces of straight and curved bridges according to skew angle and bending stiffness/torsional stiffness ratio.

Prestressed Concrete Girder Bridges Strengthened by External Post-tensioning Method

  • Kim, Kwang-Soo;Park, Sun-Kyu;Kim, Hyeong-Yeol
    • KCI Concrete Journal
    • /
    • v.12 no.1
    • /
    • pp.17-22
    • /
    • 2000
  • This Paper deals with the analysis of both unstrengthened and strengthened prestressed concrete girder bridges. Finite element method is utilized to perform the analysis of superstructures. Based on the grillage method of analysis. emphasis is Placed on the modeling techniques for structures. The conventional grillage method of analysis is modif'=ed so that the interaction between the slab and gilder behaviors can be taken into account in the analysis A Prototype of simply supported prestressed I-type girder bridge is selected for the analysis. The results of numerical analyses are compared with those of load test. The results of analysis indicate that the proposed method of analysis gives more realistic response of bridges than the conventional grillage method.

  • PDF

Lateral Load Distribution for Prestressed Concrete Girder Bridge (PSC 거더교의 하중횡분배에 관한 연구)

  • Park, Moon-Ho;Park, Jung- Hwal;Kim, Jin- Kyu
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.4 no.2
    • /
    • pp.157-166
    • /
    • 2001
  • The purpose of this study is to examine the accuracy of the code provisions on lateral load distribution factors of prestressed concrete girder bridges. Most designers in Korea use the lever method or lateral load distribution formula in the existing design codes. However, the methods do not account for the effect of bridge skew or direction of diaphragm. Therefore, this study analysed the prestressed concrete girder bridge with grillage model for various girder spacings, directions of diaphragms, span lengths, and skews, and compared the results with those of existing design code. It has been found that lateral load distribution factors were proportional to the girder spacing while they were not significantly affected by the change of span length, direction of diaphragm, and skew. For bending moments, lateral load distribution factors from the grillage analysis were 60%~68% of those from Korean bridge design code. Therefore, the code provisions result in very conservative design. For support reactions, however, lateral load distribution factors from the grillage analysis were slightly greater than those from Korean bridge design code. Therefore, the capacity of bearings of the bridge with a large skew should be determined by grillage analysis.

  • PDF

A Study on the Structural Analysis of Curved Two Girder Bridges for AGT System (경량전철용 곡선 2주형 판형교의 적용성에 관한 연구)

  • Seong Taek-Ryong;Yoon Tae-Yang;Lee An-Ho
    • Proceedings of the KSR Conference
    • /
    • 2003.05a
    • /
    • pp.382-387
    • /
    • 2003
  • This research has investigated structural characteristics of curved two girder bridges proposed for AGT system and analyzed the results of the structural analysis of three different modelings for 3 span continuous bridge, each modeled in grillage modeling, simplified 3D modeling, and detailed 3D modeling respectively. The grillage modeling appeared to be somewhat underestimated in deflection and overestimated in rotation with respect to 3D modelings. Also, it is impossible to make a detailed examination of local buckling and details of cross beams, etc. The point that warping effect cannot be considered may cause the structural analysis unsafe, accordingly the structural analysis of curved two girder bridges should be done with 3D modelings.

  • PDF

A Comparative Study on Structural Modeling of Mullticellular Box Girder Bridges (다중 셀 박스형 교량에 대한 구조해석 모델의 비교연구)

  • 김동욱;김상훈;김문영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.325-332
    • /
    • 2001
  • Due to the rapidly developing computer technique, bridges can be modeled by using grillage method for analyzing the girder, or FEM for more accrute and detailed analysis. If the cells of multicellular decks are stiffened with diaphrams or cross-bracing at frequent intervals, to prevent them changing shape by distortion, the deck can be analysed like a beam if it is narrow, or like slab if it is wide. However it is often convenient and acceptable to use cellular structures and box-girders which do distort under shear and torsional loading, and it is then necessary to take account of the distortion in the method of calculation. But plane grillage method cannot cosider effect of distortion and FEM is non-economical because it is not easy to modeling and needs lots of time. So, this study suggests the Shear-flexible Grillage which reproduces the distortion behaviour of the cells.

  • PDF

FE Model Updating on the Grillage Model for Plate Girder Bridge Using the Hybrid Genetic Algorithm and the Multi-objective Function (하이브리드 유전자 알고리즘과 다중목적함수를 적용한 플레이트 거더교의 격자모델에 대한 유한요소 모델개선)

  • Jung, Dae-Sung;Kim, Chul-Young
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.6
    • /
    • pp.13-23
    • /
    • 2008
  • In this study, a finite element (FE) model updating method based on the hybrid genetic algorithm (HGA) is proposed to improve the grillage FE model for plate girder bridges. HGA consists of a genetic algorithm (GA) and direct search method (DS) based on a modification of Nelder & Mead's simplex optimization method (NMS). Fitness functions based on natural frequencies, mode shapes, and static deflections making use of the measurements and analytical results are also presented to apply in the proposed method. In addition, a multi-objective function has been formulated as a linear combination of fitness functions in order to simultaneously improve both stiffness and mass. The applicability of the proposed method to girder bridge structures has been verified through a numerical example on a two-span continuous grillage FE model, as well as through an experimental test on a simply supported plate girder skew bridge. In addition, the effect of measuring error is considered as random noise, and its effect is investigated by numerical simulation. Through numerical and experimental verification, it has been proven that the proposed method is feasible and effective for FE model updating on plate girder bridges.

A Study on the Behavior of Steel Curved Girder Bridge during Construction (곡선 강박스 거더교의 가설중 거동 파악 연구)

  • Gil, Heung Bae;Pae, Chang Kyu;Kang, Sang Gyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.5 s.78
    • /
    • pp.511-518
    • /
    • 2005
  • The behavior of steel curved bridges is more complicated than straight bridges, thus the analysis, design and construction process of curved bridges require much more attention. In design of curved bridges, the grillage analysis using general structural analysis program or special program is mainly used. Comparative study in coherence between these analytical results and actual behavior of curved bridges has been rarely conducted. To study the behaviour of curved bridges and verify the current design method, field measurements and analyses using general structural analysis program and 3-D refined analysis program were carried out for simple and continuous bridges in this study. The study focused on the behavior of curved steel bridges during construction. Measured and analytical results had quantitative difference mutually, but there were qualitatively similar. Stress variations in transverse direction of flange were observed and grillage analysis models yielded more conservative values than 3-D refined analysis models.

The use of eccentric beam elements in the analysis of slab-on-girder bridges

  • Chan, Tommy H.T.;Chan, Jeffrey H.F.
    • Structural Engineering and Mechanics
    • /
    • v.8 no.1
    • /
    • pp.85-102
    • /
    • 1999
  • With the advent of computer, the finite element method has become a most powerful numerical method for structural analysis. However, bridge designers are reluctant to use it in their designs because of its complex nature and its being time consuming in the preparation of the input data and analyzing the results. This paper describes the development of a computer based finite element model using the idea of eccentric beam elements for the analysis of slab-on-girder bridges. The proposed method is supported by a laboratory test using a reinforced concrete bridge model. Other bridge analytical schemes are also introduced and compared with the proposed method. The main aim of the comparison is to prove the effectiveness of the shell and eccentric beam modelling in the studies of lateral load distribution of slab-on-girder bridges. It is concluded that the proposed finite element method gives a closer to real idealization and its developed computer program, SHECAN, is also very simple to use. It is highly recommended to use it as an analytical tool for the design of slab-on-girder bridges.

Space grid analysis method in modelling shear lag of cable-stayed bridge with corrugated steel webs

  • Ma, Ye;Ni, Ying-Sheng;Xu, Dong;Li, Jin-Kai
    • Steel and Composite Structures
    • /
    • v.24 no.5
    • /
    • pp.549-559
    • /
    • 2017
  • As few multi-tower single-box multi-cell cable-stayed bridges with corrugated steel webs have been built, analysis is mostly achieved by combining single-girder model, beam grillage model and solid model in support of the design. However, such analysis methods usually suffer from major limitations in terms of the engineering applications: single-girder model fails to account for spatial effect such as shear lag effect of the box girder and the relevant effective girder width and eccentric load coefficient; owing to the approximation in the principle equivalence, the plane grillage model cannot accurately capture shear stress distribution and local stress state in both top and bottom flange of composite box girder; and solid model is difficult to be practically combined with the overall calculation. The usual effective width method fails to provide a uniform and accurate "effective length" (and the codes fail to provide a unified design approach at those circumstance) considering different shear lag effects resulting from dead load, prestress and cable tension in the construction. Therefore, a novel spatial grid model has been developed to account for shear lag effect. The theoretical principle of the proposed spatial grid model has been elaborated along with the relevant illustrations of modeling parameters of composite box girder with corrugated steel webs. Then typical transverse and longitudinal shear lag coefficient distribution pattern at the side-span and mid-span key cross sections have been analyzed and summarized to provide reference for similar bridges. The effectiveness and accuracy of spatial grid analysis methods has been finally validated through a practical cable-stayed bridge.

Structural Responses of Composite-girder Bridges Due to Design Live Loads using Distribution Factor Method and Grillage Analysis (횡분배계수법과 평면격자 해석법을 이용한 합성거더교의 설계활하중 응답연구)

  • Jung, Myung-Rag;Yang, Hee-Sun;Kim, Moon-Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.2
    • /
    • pp.131-138
    • /
    • 2015
  • In this paper, the modified live-load and designed formula are studied according to the fact the highway bridge design specifications are recently revised. The two examples for composite steel plates and PSC girder bridges are studied. The envelope is analyzed with the finite element models and lateral load distribution method applying the existing highway bridge specification(2010), the newly revised highway bridge specification(2015) and AASHTO LRFD. In case of composite steel plates, length changes between spans are studied, and in case of PSC girder. changes of the number of cross-beams and spans, and span-lengths, are analyzed.