• Title/Summary/Keyword: Grid-to-rod fretting

Search Result 27, Processing Time 0.025 seconds

Study on Characteristics of Sliding Support for Fuel Rod (이동 가능한 연료봉 지지부의 특성 고찰)

  • Song, Kee-Nam;Lee, Sang-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.2
    • /
    • pp.201-206
    • /
    • 2011
  • A spacer grid assembly is one of the most important structural components of the nuclear fuel assembly of a pressurized water reactor (PWR), and it affects the performance of the fuel assembly. The primary design requirement is that the mechanical integrity of the fuel rod should be maintained by the spacer grid assembly during the operation of the reactor. It was known that fretting damage to the fuel rod can be reduced by adjusting the relative moving displacement between the fuel rod and its support. In this study, we used the finite element method to evaluate the characteristics of a sliding support designed to reduce fretting damage of fuel rods.

Optimization of a Nuclear Fuel Spacer Grid Using Considering Impact and Wear with Homology Constraints (호몰로지 조건을 이용하여 충격과 마모를 고려한 원자로 핵연료봉 지지격자의 최적설계)

  • Lee, Hyun-Ah;Kim, Chong-Ki;Song, Kee-Nam;Park, Gyung-Jin
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.145-150
    • /
    • 2007
  • The spacer grid set is a component in the nuclear fuel assembly. The set supports the fuel rods saftely. Therefore, the spacer gl1d set should have sufficient strength for the external impact forces. The fretting wear occurs between the spring of the fuel rod and the spacer grid due to tile flow-induced vibration. The conceptual design of the spacer grid set is performed based on the Independence Axiom of axiomatic design. Two functional requirements are defined and corresponding design parameters are selected. The overall flow of the design is defined according to the application of axiomatic design. The design for the impact load is carried out by using nonlinear dynamic analysis to determine the length of the dimple. Topology optimization is carried out to determine a new configuration of the spring. The fretting wear is reduced by shape optimization using the homology theory. In the design to reduce the fretting wear, the deformed shape of the spring should be the same as that of the fuel rod. This condition is transformed to a function and considered as a constraint in the shape optimization process. The fretting wear is expected to be reduced due to the homology constraint. The objective function is minimizing the maximum stress to allow a slight plastic deformation. Shape optimization results are confirmed through nonlinear static analysis because the contact area becomes wider.

  • PDF

Analysis of Worn Area Characteristic in the Fretting Wear of Nuclear Fuel Rod (핵연료 피복관 프레팅 마멸에서 나타난 마멸면 특성 분석)

  • Lee, Young-Ho;Kim, Hyung-Kyu;Jung, Youn-Ho
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.256-261
    • /
    • 2004
  • To evaluate the effect of spring shape on the fretting wear of nuclear fuel rod, sliding wear tests were performed using three kinds of space grid springs in room temperature air and water. With increasing slip amplitude, wear volume of each spring gradually increased. It is apparently shown that spring with convex shape had a relatively high wear resistance compared with concave shape springs. It is suggested that the ratio of the wear volume to the worn area can be suggested as an efficient and valid parameter to evaluate the wear resistibility of a fuel grid spring.

  • PDF

An Experimental Study on PWR Nuclear Fuel Assembly Vibration (경수로 핵연료집합체 진동의 실험적 고찰)

  • 장영기;김규태;조규종
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.82-87
    • /
    • 2003
  • Nuclear fuel with a big slenderness ratio is susceptible to flow-induced vibration under very severe conditions of high temperature, high flow and exposure to irradiation in nuclear reactor. The fuel assembly should, therefore, be designed to escape any resonance due to the vibration during the reactor operation, in particular, in case of the design changes. In addition, the amplitudes due to the grid vibration, the fuel rod vibration and the fuel assembly vibration should be minimized to reduce the grid-to-rod fretting wear. Fuel assembly vibration tests in air at room temperature and in water at high temperature have been performed to investigate fuel vibration behaviors. The frequency and damping during the test in air have been compared to those in water. Through the hydraulic test, the advanced assembly has been evaluated not to be susceptible to any resonance. In addition, the test data from the tests can be used to make fuel model and to evaluate grid-to-rod fretting wear.

  • PDF

Modal Analysis and Testing for a Middle Spacer Grid of a Nuclear Fuel Rod (핵 연료봉 중간 지지격자의 모달 해석 및 실험)

  • Ryu, Bong-Jo;Koo, Kyung-Wan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.12
    • /
    • pp.1948-1952
    • /
    • 2012
  • The paper presents modal testing and analysis in order to obtain the dynamic characteristics of a middle spacer grids of a nuclear fuel rod. A spacer grid is one of the important structural elements supporting nuclear fuel rods. Such a fuel rod can be oscillated by its thermal expansion, neutron irradiation and etc. due to cooling water flow under the operation of a nuclear power plant. When the fuel rod vibrates, fretting wear due to repeated friction motion between the fuel rods and spacer grids can be occurred, and so the fuel rod is damaged. In this paper, through modal analysis and testing, natural frequencies and modes of a middle spacer grid were calculated, and the following conclusions were obtained. Firstly the numerical first-seven natural frequencies for spacer grids of a fuel rod having complicated structures have a small difference within 3.8% with experimental natural frequencies, and so the suitability of simulation results was verified. Secondly, experimental mode shapes for a middle spacer grid of a nuclear fuel rod were verified by obtaining lower non-diagonal terms through MAC(Modal Assurance Criteria), and were confirmed by the simulation modes.

Optimization of a Nuclear Fuel Spacer Grid Spring Using Homology (호몰로지 설계를 이용한 원자로 핵연료봉 지지격자 스프링의 최적설계)

  • Lee Jae-Jun;Song Ki-Nam;Park Gyung-Jin
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.828-835
    • /
    • 2006
  • Spacer grid springs support the fuel rods in a nuclear fuel system. The spacer grid is a part of a fuel assembly. Since a spring has repeated contacts with the fuel rod, fretting wear occurs on the surface of the spring. Design is usually performed to reduce the wear. The conceptual design process for the spring is defined by using the Independence of axiomatic design and the design is carried out based on the direction that the design matrix indicates. For detailed design an optimization problem is formulated. In optimization, homologous design is employed to reduce fretting wear. The deformation of a structure is called homologous if a given geometrical relationship holds for a given number of structural points before, during, and after the deformation. In this case, the deformed shape of the spring should be the same as that of the fuel rod. 1bis condition is transformed to a function and considered as a constraint in the optimization process. The objective function is minimizing the maximum stress to allow a local plastic deformation. Optimization results show that the contact occurs in a wide range. Also, the results are verified by nonlinear finite element analysis.

  • PDF

Fretting Wear Mechanisms of Zircaloy-4 and Inconel 600 Contact in Air

  • Kim, Tae-Hyung;Kim, Seock-Sam
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.9
    • /
    • pp.1274-1280
    • /
    • 2001
  • The fretting wear behavior of the contact between Zircaloy-4 tube and Inconel 600, which are used as the fuel rod cladding and grid, respectively, in PWR nuclear power plants was investigated in air. In the study, number of cycles, slip amplitude and normal load were selected as the main factors of fretting wear. The results indicated that wear increased with load, slip amplitude and number of cycles but was affected mainly by the slip amplitude. SEM micrographs revealed the characteristics of fretting wear features on the surface of the specimens such as stick, partial slip and gross slip which depended on the slip amplitude. It was found that fretting wear was caused by the crack generation along the stick-slip boundaries due to the accumulation of plastic flow at small slip amplitudes and by abrasive wear in the entire contact area at high slip amplitudes.

  • PDF

Structural Design Considerations on the Spacer Grid Assembly of PWR Nuclear Fuel (경수로 핵연료 지지격자체 구조설계에 대한 소고)

  • Song, Kee-nam
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.7 no.3
    • /
    • pp.54-60
    • /
    • 2011
  • A spacer grid, which supports nuclear fuel rods laterally and vertically with a friction grip, is one of the most important structural components in a PWR fuel. The form of grid strap and supporting parts such as grid spring and dimple is known to be closely related with the mechanical/structural performance of spacer grid and nuclear fuel assembly. In this study, reviewing various research results for enhancing the performance of the spacer grid, some structural design considerations and research directions on the spacer grid assembly are suggested for further study.

Design and Analyses on the Spacer Grid of the PLWR Fuel (가압경수로 핵연료 지지격자의 기계/구조적 설계 및 분석)

  • Song, Kee-Nam
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.746-751
    • /
    • 2001
  • Design requirements for the nuclear fuel assembly grid of the pressurized water reactor are reviewed from the mechanical/structural point of view. And mechanical/structural tests and numerical analyses on the various spacer grid candidates that has been uniquely designed by KAERI are carried out to find out their mechanical/structural performance. As a result, the results from the numerical analyses are good agreements with test results.

  • PDF