• 제목/요약/키워드: Grid-generated Flow

검색결과 126건 처리시간 0.027초

MEPDF를 이용한 와류 연소실 내부 예혼합 화염의 대 와동 모사 (Large Eddy Simulation of Turbulent Premixed Flame in a Swirled Combustor Using Multi-environment Probability Density Function approach)

  • 김남수;김용모
    • 한국연소학회지
    • /
    • 제22권3호
    • /
    • pp.29-34
    • /
    • 2017
  • The multi-environment probability density function model has been applied to simulate a turbulent premixed flame in a swirl combustor. To realistically account for the unsteady flow motion inside the combustor, the formulations are derived for the large eddy simulation. The Flamelet generated manifolds is utilized to simplify a multi-dimensional composition space with reasonable accuracy. The sub grid scale mixing is modeled by the interaction by exchange with the mean mixing model. To validate the present approach, the simulation results are compared with experimental data in terms of mean velocity, temperature, and species mass fractions.

측풍영향을 고려한 고속전철 주위의 비압축성 점성 유동 해석 (Incompressible Viscous Flow Analysis around a High-Speed Train Including Cross-Wind Effects)

  • 정영래;박원규;김홍원;하성도
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1995년도 추계 학술대회논문집
    • /
    • pp.55-63
    • /
    • 1995
  • The flow field around a high-speed train including cross-wind effects has been simulated. This study solves 3-D unsteady incompressible Navier-Stokes equations in the inertial frame using the iterative time marching scheme. The governing equations are differenced with 1st-order accurate backward difference scheme for the time derivatives, 3th-order accurate QUICK scheme for the convective terms and 2nd-order accurate central difference scheme for the viscous terms. The Marker-and-Cell concept was applied to efficiently solve continuity equation, which is differenced with 2nd-order accurate central difference scheme. The 4th-order artificial damping is added to the continuity equation for numerical stability. A C-H type of elliptic grid system is generated around a high-speed train including ground. The Baldwin-Lomax turbulent model was implemented to simulate the turbulent flows. To validate the present procedure, the flow around a high speed train at constant yaw angle of $45^{\circ}\;and\;90^{\circ}$ has been simulated. The simulation shows 3-D vortex generation in the lee corner. The flow separation is also observed around the rear of the train. It has concluded that the results of present study properly agree with physical flow phenomena.

  • PDF

열린 공동 유동의 수치적 모사 및 Jet Blowing 을 이용한 제어 (Numerical Analysis and Control of Open Cavity Flow)

  • 장경식;박승오;최훈기
    • 한국항공우주학회지
    • /
    • 제30권5호
    • /
    • pp.101-108
    • /
    • 2002
  • 본 연구는 비압축성 열린 공동 유동에 대한 수치적 모사이다. 2차원 Navier-Stokes 방적식을 제어체적에 대해 엇갈림 격자계를 이용하여 공간에 대해서는 C-QUICK을 시간에 대해서는 내재적 기법을 이용하여 적분하였다. 압력장은 SIMPLE-C 알고리즘에 의하여 계산 되었다. 정상 모드에서는 나타나지 않지만 전단층 모드의 경우에 나타나는 세 번째 소용돌이가 공동 유동의 안정성에 중요한 역할을 하는 것을 알 수 있었다. 이를 바탕으로 공동 앞전 아래 벽면에 Jet blowing을 정상 상태와 비정상 상태로 가하여 그 영향을 알아보았다. 주기적인 blowing 인 경우 가진 주기와 위상차 그리고 속도 크기가 중요한 변수이며 이 변수들에 의한 영향을 연구하였다.

SI 엔진의 밸브 리프트에 따른 흡입 포트 및 실린더내 정상 3차원 유동장 해석 (Three-Dimensional Analysis on Induction Port and In-cylinder Flow for Various Valve Lifts in an SI Engine)

  • 김영남;이경환
    • 한국자동차공학회논문집
    • /
    • 제3권5호
    • /
    • pp.82-89
    • /
    • 1995
  • The three-dimensional fluid motion through the intake port and cylinder of a single DOHC SI engine was investigated with a commercial computational fluid dynamics simulation program, STAR-CD. This domain includes the intake port, intake valves and combustion chamber. Steady induction port flows for various valve lifts have been simulated for an actual engine configuration. The geometry was obtained by direct interface with a three-dimensional CAD software for complicated port and valve shape. The computational grid was generated using the commercial preprocessor ICEM CFD/CAE. Detailed procedures were presented on the generation of the geometry and the block-structured mesh. A standard k-${\varepsilon}$ turbulent model was applied to consider the complexity of the geometry and the fluid motion. The global flow patterns and the distributions of various quantities, such as pressure, velocity magnitude around the valve seat etc., were examined. The computational results, such as mass flow rate, discharge coefficient etc., for various valve lifts were compard with the experimental results and the computational results were found in good agreement with the experiment.

  • PDF

자유표면을 포함한 선체주위 난류유동 해석 (Computation of Turbulent Flow around a Ship Model with Free-Surface)

  • 김정중;김형태
    • 대한조선학회논문집
    • /
    • 제38권1호
    • /
    • pp.1-8
    • /
    • 2001
  • 본 논문에서는 비압축성 Reynolds-Averaged Navier-Stokes 방정식을 수치 해석하여 자유표면을 포함한 선체 주위의 난류 유동을 계산하였다. 정규격자 상에서 공간의 이산화는 2차 정도의 유한차분법을, 시간의 적분에는 4단계 Runge-Kutta법을 이용하였고, 난류 닫힘 조건을 만족시키기 위해 Baldwin-Lomax 난류 모형을 사용하였다. 자유표면의 위치는 운동학적 경계조건식을 Lax-Wendroff법으로 풀어서 구하였고, 자유표면과 격자 경계면을 일치시키기 위해 매 시간마다 새로 계산된 자유표면 위치에 맞추어 격자를 새로 구성하였다. 속도와 압력에 대한 경계조건은 자유표면에서 점성을 무시하여 근사한 동역학적 조건을 적용해서 구하였다. 본 연구에서 개발된 수치해법을 검증하기 위하여 실험자료가 많은 Wigley 선형과 Sries 60 $C_B=0.6$ 선형에 대해 수치계산을 수행하였고 계산된 선체 주위의 파형이 실험 결과와 잘 일치하는 것을 확인하였다.

  • PDF

Numerical Simulations of Breaking Waves above a Two-Dimensional Submerged Circular Cylinder

  • Kim, Seung-Nam;Lee, Young-Gill
    • Journal of Ship and Ocean Technology
    • /
    • 제5권2호
    • /
    • pp.50-61
    • /
    • 2001
  • In this paper, nonlinear interactions between water waves and a horizontally submerged circular cylinder are numerically simulated. In this case, the nonlinear interactions between them generated a wave breaking phenomenon. The wave breaking phenomenon plays an important role in the wave farce. Negative drifting forces are raised at shallow submerged cylinders under waves because of the wave breaking phenomenon. For the numerical simulation, a finite difference method based on the unsteady incompressible Navier-Stokes equations and the continuity equation is adopted in the rectangular grid system. The free surface is simulated with a computational simulation method of two-layer flow by using marker density. The results are compared with some existing computational and experimental results.

  • PDF

냉각탑 주위 장애물에 의한 재순환 현상에 관한 3차원 수치해석 (Three-Dimensional Numerical Analysis on Recirculation Generated by Obstacles Around a Cooling Tower)

  • 최영기
    • 대한기계학회논문집B
    • /
    • 제33권4호
    • /
    • pp.225-234
    • /
    • 2009
  • The present study has been preformed to investigate the effect of obstacles around a cooling tower with air-guide to prevent recirculation. The external region as well as the cooling tower are included in the computational domain to analyze the flow phenomena around a cooling tower accurately. Three-dimensional analysis is performed using the finite volume method with non-orthogonal and unstructured grid system. The standard turbulence model is used to consider the turbulence effect. In order to investigate the recirculation phenomena, flow and temperature fields are calculated with the distance between cooling tower and obstacle, the allocated geometrical type and the air-guide. The moisture fraction rates decrease with increment of the distance between cooling tower and obstacle. The effect of air-guide to reduce the mean recirculation rate is obviously observed.

고속으로 주행하는 열차 주위의 3차원 비정상 유동장 해석 (Numerical Analysis of 3-Dimensional Unsteady Flow Around the High Speed Train)

  • 하성도
    • 연구논문집
    • /
    • 통권27호
    • /
    • pp.15-34
    • /
    • 1997
  • The 3-dimensional unsteady compressible flows around the high speed train have been simulated for the train entering a tunnel and for passing another train. The simulation method employs the implicit approximation-factorization finite difference algorithm for the inviscid Euler equations in general curvilinear coordinates. A moving grid scheme is applied in order to resolve the train movement relative to the tunnel and the other train. The velo-city and pressure fields and pressure drag are calculated to study the effects of tunnel and the other train. The side directional force which is time dependent is also computed for the passing train. Pressure distribution shows that the compression wave is generated in front of the train noise just after the tunnel entrance and proceeds along the inside of tunnel.

  • PDF

3차원 미니밴 형상 주위의 비압축성 점성 유동 해석 (Incompressible Viscous Flow Analysis Around a Three Dimensional Minivan-Like Body)

  • 정영래;박원규;박영준;김종섭;홍성훈
    • 한국전산유체공학회지
    • /
    • 제2권1호
    • /
    • pp.46-53
    • /
    • 1997
  • The flow field around a three dimensional minivan-like body has been simulated. This study solves 3-D unsteady incompressible Navier-Stokes equations on a non-orthogonal curvilinear coordinate system using second-order accurate schemes for the time derivatives, and third/second-order scheme for the spatial derivatives. The Marker-and-Cell concept is applied to efficiently solve continuity equation. A H-H type of multi-block grid system is generated around a three dimensional minivan-like body. Turbulent flows have been modeled by the Baldwin-Lomax turbulent model. To validate present procedure, the flows around the Ahmed body with 12.5° of slant angle are simulated. A good agreement with other numerical results is achived. After code validation, the flows around a mimivan-like body are simulated. The simulation shows three dimensional vortex-pair just behind body. The flow separation is also observed on the rear of the body. It has concluded that the results of present study properly agreed with physical flow phenomena.

  • PDF

수정된 CIP방법을 이용한 벽면 충돌 후 액적의 퍼짐 현상에 대한 수치해석 연구 (NUMERICAL STUDY ON DROPLET SPREAD MOTION AFTER IMPINGEMENT ON THE WALL USING IMPROVED CIP METHOD)

  • 손소연;고권현;이성혁;유홍선
    • 한국전산유체공학회지
    • /
    • 제15권4호
    • /
    • pp.25-31
    • /
    • 2010
  • Interface tracking of two phase is significant to analyze multi-phase phenomena. The VOF(Volume of Fluid) and level set are well known interface tracking method. However, they have limitations to solve compressible flow and incompressible flow at the same time. CIP(Cubic Interpolate Propagation) method is appropriate for considering compressible and incompressible flow at once by solving the governing equation which is divided up into advection and non-advection term. In this article, we analyze the droplet impingement according to various We number using improved CIP method which treats nonlinear term once more comparison with original CIP method. Furthermore, we compare spread radius after droplet impingement on the wall with the experimental data and original CIP method. The result using improved CIP method shows the better result of the experiments, comparison with result of original CIP method, and it reduces the mass conservation error which is generated in the numerical analysis comparison with original CIP method.