• 제목/요약/키워드: Grid-connected Three-phase Inverter

검색결과 84건 처리시간 0.03초

계통 연계형 3-레벨 인버터 시스템을 위한 LCL-필터 설계 방법 (Design of an LCL-Filter for Grid-Connected Three-Level Inverter System)

  • 박준영;김석민;서승규;박성수;이교범
    • 전기전자학회논문지
    • /
    • 제21권2호
    • /
    • pp.105-114
    • /
    • 2017
  • 본 논문은 계통 연계형 3-레벨 인버터 시스템을 위한 LCL-필터 설계 방법을 제안한다. 최근 풍력 및 태양광과 같은 신재생에너지 발전 시스템을 위한 3상 PWM 인버터의 수요가 증가하고 있다. 이러한 PWM 인버터는 스위칭 동작에 의해 발생하는 고조파 성분을 제거하기 위하여 LCL-필터를 거쳐 계통과 연결된다. 필터 설계에 관한 다양한 연구가 진행되었지만 최소의 사이즈로 목표하는 고조파 제거 성능을 얻기 위해서는 해당 PWM 인버터의 스위칭 방법을 고려한 필터 설계 방법이 요구된다. 본 논문은 공간 전압벡터 변조기법(SVPWM)에 최적화된 LCL-필터 설계방법을 제시한다. 시뮬레이션과 실험 결과를 통해 제안하는 방법으로 설계된 LCL-필터의 성능을 검증한다.

계통연계 분산전원을 위한 Phase Lacked loop (Phase Lacked Loop for Grid-Connected Three phase Inverter)

  • 김영섭;안교상;박성연;임희천;오제명
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 춘계학술대회
    • /
    • pp.172-176
    • /
    • 2005
  • Phase Lacked Loop(PLL)은 분산전원을 계통연계시 동기설정을 위해 중요한 장비이다. 이러한 동기설정은 Point of Common Coupling(PCC)에서 계통 전압을 검출하여 크기와 위상을 동일하게 설정하여 전력변환장치에서 전력을 출력한다. 일반적으로 PCC에서 계통전압을 검출하였을 때 고조파, 상간불평형은 전력변환장치 출력 왜곡을 야기 시킨다. 본 논문에서는 이러한 출력왜곡을 감소시키기 위한 3상 PLL을 모델링하여, 그 제어 성능을 시뮬레이션을 통해 확인하였다.

  • PDF

전류 리플 저감을 위한 세분화된 공간전압벡터를 이용한 모델 예측 제어 기반의 SVM 방법 (Space Vector Modulation based on Model Predictive Control to Reduce Current Ripples with Subdivided Space Voltage Vectors)

  • 문현철;이준석;이준희;이교범
    • 전력전자학회논문지
    • /
    • 제22권1호
    • /
    • pp.18-26
    • /
    • 2017
  • This paper proposes the model predictive control with space vector modulation (SVM) method for current control of voltage-source inverter. Unlike the conventional method using a limited number of voltage vectors by switching states, the proposed method can consider various voltage vectors to identify the optimized voltage vector. The various voltage vectors are obtained by subdividing existing voltage vectors. The optimized voltage vector that minimizes the cost function is selected and applied to the inverter by using the SVM. The various voltage vectors and SVM reduce current ripples in the output AC side of the inverter compared with the conventional method. The effectiveness and performance of the proposed method are verified through simulation and experiment with a three-phase two-level voltage-source grid-connected inverter.

Effects of a Static Synchronous Series Compensator (SSSC) Based on a Soft Switching 48-Pulse PWM Inverter on the Power Demand from the Grid

  • Ustun, Taha Selim;Mekhilef, Saad
    • Journal of Power Electronics
    • /
    • 제10권1호
    • /
    • pp.85-90
    • /
    • 2010
  • In this paper the effects of a Static Synchronous Series Compensator, which is constructed with a 48-pulse inverter, on the power demand from the grid are studied. Extensive simulation studies were carried out in the MATLAB simulation environment to observe the compensation achieved by the SSSC and its effects on the line voltage, line current, phase angle and real/reactive power. The designed device is simulated in a power system which is comprised of a three phase power source, a transmission line, line inductance and load. The system parameters such as line voltage, line current, reactive power Q and real power P transmissions are observed both when the SSSC is connected to and disconnected from the power system. The motivation for modeling a SSSC from a multi-pulse inverter is to enhance the voltage waveform of the device and this is observed in the total harmonic distortion (THD) analysis performed at the end of the paper. According to the results, the power flow and phase angle can be controlled successfully by the new device through voltage injection. Finally a THD analysis is performed to see the harmonics content. The effect on the quality of the line voltage and current is acceptable according to international standards.

계통연계 태양광발전시스템의 제어기법 및 연계운전특성 (A Control Method and Test Results of Utility-Interactive Photovoltaic Power Generation Systems)

  • 황인호;안교상;임희천;김신섭
    • 전력전자학회논문지
    • /
    • 제5권2호
    • /
    • pp.123-129
    • /
    • 2000
  • 본 논문은 실용화 보급단계에 있는 대표적인 대체에너지 전원으로서, 태양전지, 직·교류(DC/AC) 인버터, 전력계통으로 구성되는 계통연계형 태양광발전시스템의 설계 및 시험결과에 대하여 기술하고자 한다. 계통연계를 위한 시스템 특성을 검증하기 위해 3상 직·교류 인버터를 포함한 50kW 계통연계 태양광발전시스템이 설계 제작되었다. 또한 d-q 변환을 이용한 PI 제어기를 갖는 전류제어방식의 3상 PWM 인버터 제어기법이 제시되었다. 실험결과들은 제안된 시스템이 계통연계 동작에 있어서 단위 역율로 안정하게 동작함을 보여준다.

  • PDF

독일 계통 연계 규정에 기반 된 대용량 태양광 발전 시스템의 계통 안정화를 위한 제어 전략 (Control Strategy for a Grid Stabilization of a Large Scale PV Generation System based on German Grid Code)

  • 배영상;김래영
    • 전력전자학회논문지
    • /
    • 제19권1호
    • /
    • pp.41-50
    • /
    • 2014
  • The rising penetration of renewable energy resulted in the development of grid-connected large-scale power plants. Therefore, grid stabilization, which depends on the system-type or grid of each country, plays an important role and has been strengthened by different grid codes. With this background, VDE-AR-N 4105 for photovoltaic (PV) systems connected to the low-voltage grid and the German Association of Energy and Water Industries (BDEW) introduced the medium-voltage grid code for connecting power plants to the grid and they are the most stringent certifications. In this paper, an optimal control strategy scheme for three-phase grid-connected PV system is enhanced with VDE-AR-N 4105 and BDEW grid code, where both active/reactive powers are controlled. Simulation and experimental results of 100kW PV inverter are shown to verify the effectiveness of the proposed implemental control strategy.

계통연계형 인버터의 고조파 전류저감을 위한 LLCL 필터에 관한 연구 (A Study on LLCL Filter to Reduce Harmonic Current of Grid Connected Power Inverter)

  • 안병웅;홍창표;김학원;조관열;임병국
    • 전력전자학회논문지
    • /
    • 제19권1호
    • /
    • pp.64-70
    • /
    • 2014
  • In this paper, the new LLCL filter is proposed for grid connected three-phase PWM inverter for passive damping. LLCL filter inserts a small inductor in the branch of the capacitor of the traditional LCL filter to compose a series resonant circuit to reduce the switching-frequency component on grid current. Using LLCL filter, the switching-frequency current ripple components can be attenuated much better than the LCL filter, leading to a decrease in the total inductance. However, the resonance phenomena caused by zero impedance from the addition of LC branch in LLCL filter can be a big problem. Resonance phenomena of LLCL filter can be a source of grid system instability, so proper damping methods are required. However, it is difficult to apply a passive damping method in the conventional LLCL filter, because the damping resistor increase impedance of the LC branch. Therefore, switching frequency component of grid current can not much attenuated by low Q of LC series resonance effect. In this paper, a new LLCL filter is proposed to overcome the conventional LLCL filter with passive damping. The validity of the proposed method is proven by simulation and experimental result.

220V, 440V 3상 계통전압 혼용이 가능한 용접 전원장치용 위상천이 풀브리지 컨버터 (Phase-Shifted Full-Bridge Converter for Welding Power Supply Capable of Using 220 V, 440 V 3-Phase Grid Voltages)

  • 윤덕현;이우석;이준영;이일운
    • 전력전자학회논문지
    • /
    • 제26권5호
    • /
    • pp.372-375
    • /
    • 2021
  • A three-leg inverter-type isolated DC-DC Converter that can use 220 and 440 V grid input voltages is introduced. The secondary circuit structure of the proposed topology is center-tap, which is the same as the conventional phase-shifted full-bridge converter. However, the primary circuit structure is composed of a three-leg inverter structure and a transformer, in which two primary windings are connected in series. The proposed circuit structure has a wider input voltage range than the conventional phase-shifted full-bridge converter, and the circulating-current on the primary-side is reduced. In addition, the voltage stress at the secondary rectifier is greatly improved, and high efficiency can be achieved at a high input voltage by removing the snubber circuit added to the conventional converter. Prototype converters with input DC of 311 V, output of 622 V, and 50 V and 6 kW class specifications were designed and manufactured to verify the validity of the proposed topology; the experimental results are presented.

가변 노치필터에 의한 능동형 AC 전자부하의 3상 전류 불평형 저감 (Reduction of the Unbalanced Three Phase Input Current by Variable Notch Filter in Active AC Electronic Load)

  • 김도윤;이정효;이용석;정두용;정용채;원충연
    • 전력전자학회논문지
    • /
    • 제17권2호
    • /
    • pp.158-165
    • /
    • 2012
  • In this paper, the test bed using three-phase PWM converter connected with single phase inverter in series is set up to configure an active AC electric load. Since the two topologies, three-phase PWM converter and single-phase inverter, can be operated bidirectionally, the system not only re-generates surplus power to grid but also prevents power dissipation. However, the construction of system has a drawback. That is, ripple components two times of inverter operation frequency occur at DC-Link due to cascade connection, it can be cause of three phase unbalance Since the operational characteristic of the active AC electric load, the power frequency entered into the electric load can be varied, and the ripple of DC-Link is changed as well. In this paper, the three-phase PWM converter using a variable notch filter is proposed, and the reduction of three-phase current unbalance is presented. the validity of the proposed PWM converter using a variable notch filter is verified by the simulation and experimental results.

Design Methodology of Passive Damped LCL Filter Using Current Controller for Grid-Connected Three-Phase Voltage-Source Inverters

  • Lee, Jun-Young;Cho, Young-Pyo;Kim, Ho-Sung;Jung, Jee-Hoon
    • Journal of Power Electronics
    • /
    • 제18권4호
    • /
    • pp.1178-1189
    • /
    • 2018
  • In grid-connected voltage-source inverters (VSIs), when compared with a simple inductive L filter, the LCL filter has a better performance in attenuating the high frequency harmonics caused by the pulse-width modulation of power switches. However, the resonance peaks generated by the filter inductors and capacitors can make a system unstable. In terms of simplicity and filter design cost, a passive damping method is generally preferred. However, its high power loss and degradation in high frequency harmonic attenuation are significant demerits. In this paper, a mathematical design solution for a passive LCL filter to derive filter parameters suppressing the high frequency current harmonics to 0.3% is proposed. The minimum filter inductance can be obtained to reduce the size of the filter. Furthermore, a minimum damping resistance design considering a current controller is analyzed for a stable closed-loop system. The proposed design method is verified by experimental results using a 5-kW three-phase prototype inverter.