• Title/Summary/Keyword: Grid-connected PCS

Search Result 115, Processing Time 0.025 seconds

Characteristics of Saturation and Circulating Current Based on Winding and Iron Core Structure of Grid-connected Transformer in Energy Storage System (ESS 연계용 변압기의 결선방식 및 철심구조에 따른 순환전류와 포화특성에 관한 연구)

  • Tae, Dong-Hyun;Lee, Hu-Dong;Kim, Ji-Myung;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.39-48
    • /
    • 2020
  • Since the fire accident of ESS (energy storage system) occurred at Gochang KEPCO Power Testing Center in August 2017, 29 fire cases with significant property losses have occurred in Korea. Although the cause of fire accidents have not been identified precisely, it should be considered battery and PCS (power conditioning system) as well as unbalance issues in the distribution system. In particular, circulating currents in a neutral line of a grid-connected transformer, which can affect a magnetized current, may have a negative effect on the ESS with unintentional core saturation and surge voltages at the secondary side of the transformer. Therefore, this paper proposes the modeling of the distribution system, which was composed of a substation, grid-connected transformer, and customer loads using PSCAD/EMTDC S/W, to analyze the phenomena of circulating current and surge voltages of the transformer with unbalanced currents in the distribution system. This paper presents a countermeasure for a circulating current with the installation of NGR (neutral grounding resistor) in grid-connected transformer. From the simulation results, it is clear that exceeding the circulating current and surge voltage at the secondary side of the transformer can be one of the causes of fire accidents.

A Study on Characteristic of Hybrid PCS for Solar Power Generation Considering on a Residential Lithium Battery ESS. (가정용 리튬배터리 ESS를 고려한 태양광 발전 하이브리드 PCS 특성에 관한 연구)

  • Hwang, Lark-Hoon;Na, Seung-kwon;Choi, Byung-Sang
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.1
    • /
    • pp.35-45
    • /
    • 2022
  • In this paper, we modeled the devices used easily in PV system circuits. In addition, for full operation of the photovoltaic system, a complete operation system for the DC-DC buck-boost converter and the MPPT control system was modeled and simulated to confirm good operation. we were constructed an actual system with the same conditions in the simulation and experimented. The purpose is to confirm the stable power supply through the load leveling by presenting the PCS considering ESS of photovoltaic power generation. we will do study to apply hybrid capacitors that have high energy density to the same size compared to the EDLC to DVR. As a result, we proposed a single-phase 3 kW grid-connected solar power converter.

Modeling and Analysis of Modified Active Frequency Drift Method (개선된 AFD기법의 모델링 및 분석)

  • An, Jin-Ung;Yu, Gwon-Jong;Choy, Ich;Choi, Ju-Yeop;Lee, Ki-Ok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.145-151
    • /
    • 2011
  • In this paper, among the active islanding detection techniques, the modified active frequency drift method was analyzed, which is relatively easy to apply to the single-phase grid-connected PV PCS. The existing designs for turbulences in these applications were empirically conducted, and do not have sufficient reliability and performance. Therefore, three application forms of the modified active frequency drift technique were modeled, based on which the proper magnitude of turbulence, which is the frequency acceleration component, was calculated. Using the results, the magnitude of and injection method for turbulence for ensuring the islanding detection performance and improving the output power quality were proposed, and they were verified via simulations and experiment to prove that the reliable islanding detection technique can be developed merely by measuring the basic output power quality, without the need for expensive islanding simulation equipment.

Performance Analysis of long term operation for photovoltaic system (태양광발전시스템의 장기운전에 의한 성능변화 분석)

  • Kim, EuiHwan;Kim, Jungsam
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.110.1-110.1
    • /
    • 2011
  • This study analyzed the performance of long term operation photovoltaic system The 50 kWp grid connected photovoltaic system which was installed at KEPRI site in 1999 has been operated more than 12 years. In order to acquire long term operation characteristics of medium size photovoltaic system, the operation test data related on power generation electricity and capacity factor of 50 kWp system, which have been collected since 1999, were analysed. From the analysing results, 57.7 MWh in annual power generation electricity of 50 kWp photovoltaic system in 1999 has been decreased 49.1 MWh in 2005 and reached 38.0 MWh in 2010. In addition to, the capacity factor of 50 kWp photovoltaic system also showed 13.2 % in 1999, 11.2% in 2005 and finally reached 8.8% in 2011. The operation test data showed a trend of decreasing of generation electricity and capacity factor during the 12 years operation time and we guessed that was caused by solar cell performance degradation and decreasing of PCS system efficiency.

  • PDF

The Long-term Operating Evaluation of the Grid Connected Photovoltaic System (태양광발전시스템의 장기운전에 의한 성능특성 분석)

  • Kim, Eui-Hwan;Kang, Seng-Won;Kim, Jae-Eon
    • New & Renewable Energy
    • /
    • v.7 no.2
    • /
    • pp.28-35
    • /
    • 2011
  • Recently, photovoltaic systems have been devolved into much larger systems up to MW-scale. Photovoltaic industry participants give their focus on power generation capability of photovoltaic modules because their benefits can be decided from the amount of generation. The information on long-term performance change of photovoltaic modules helps to estimate the amount of power generation and evaluate the economic cost-benefits. Long-term performance of a PV system has been analyzed with operation data for 12 years from 1999 to 2010. In the first year, the amount of yearly power generation was 57.7 MWh with 13.2% capacity factor. In 2007, the amount of yearly generation was 44.3 MWh with 10.14% capacity factor, and in 2010, the amount was decreased down to 38.1 MWh with 8.7% capacity factor. The result means that long-term capacity factor has been 4.5% decreased for 12 years and that the amount of generation has been decreased 34.0% for 12 years which is 2.8 % per year. The latter capacity factor has been decreased faster than 0.20%, the average rate for 10 years. The performance decrease of the PV system is meant to be accelerated. The decrease of performance and utilization is due to aged deterioration of photovoltaic modules and lowering conversion efficiency of PCS.

A Study on the Characteristics of PCS Using a Solar Cells Generation of Optimal Integrated (최적 일체형 태양광 발전용 전력변환장치 PCS 특성에 관한 연구)

  • Hwang, Lark Hoon
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.1003-1014
    • /
    • 2019
  • In this paper, we modeled the devices used easily in PV system circuits. Simulation tools use PSPICE to enable intuitive electrical circuit simulations. Simulations were also performed on the effects of temperature and spatial radiation that are easy to overlook when using solar cells using modelled libraries. In addition, for full operation of the photovoltaic system, a complete operation system for the DC-DC buck-boost converter and the MPPT(Maximum Power Point Tracking) control system was modeled and simulated to confirm good operation. In order to verify the operation of the simulation, we constructed an actual system with the same conditions in the simulation and experimented. As a result, we proposed a single-phase 3 kW grid-connected solar power converter.

Analysis of the Effect of Alternating Current Ripple on Electrical State of Health Degradation of 21700 Lithium-ion Battery (교류 리플이 21700 리튬 이온 배터리의 전기적 건강 상태 열화에 미치는 영향 분석)

  • Bongwoo Kwak
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.477-485
    • /
    • 2023
  • In this paper, the effect of AC ripple on the lifetime of lithium-ion batteries is experimentally analyzed. Bidirectional power conversion system(PCS) is used to increase the efficiency of energy storage systems (ESS). When connected to the grid, a current ripple with a frequency twice the grid frequency is applied to the battery due to its structure. Therefore, to analyze the effect of AC ripple on Li-ion battery aging, cycle life test are performed by applying charge/discharge profiles of DC current and DC+AC current ripple specifications. Based on the experimental results, direct current internal resistance (DCIR), incremental capacitance (IC), and surface temperature were analyzed. As a result, it is confirmed that AC ripple does not directly affect degradation and that battery degradation slows down after a certain cycle. These results can serve as a guideline for optimizing filters to reduce ripple on the battery side in applications where AC ripple occurs.

A Study of the PV System for Optimum Design Methods With Loss Parameter Compensation

  • Lee, Kang-Yeon;Choi, Moon-Han;Choi, Youn-Ok;Joeng, Byeong-Ho;Cho, Geum-Bae
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.9
    • /
    • pp.64-75
    • /
    • 2007
  • Photovoltaic systems utilize the infinite clean energy of the sun, without creating any air pollution or noise and mechanical vibration. A PV system operates without the need of fuel, rotation surfaces, high temperatures or high pressures. It is therefore to do maintain and simple to install as well as having a long life cycle. The global market for PV systems continues to grow rapidly by 30[%] per year. This paper suggests a new design method for the PV system installation that will allow to the improvement of system efficiency. This method is in accordance with the loss parameter compensation method designed for the PV systems and investigated through simulation and practical experimentation. It was applied to an interconnected 10[kW] grid PV system and was demonstrated in the field. Features such as solar array, PCS, system efficiency, performance and stability were considered. Through the proposed optimal parameter design method, the features of the system were studied, and the 10[kW] PV system was demonstrated and analyzed.

Rule-based Coordination Algorithms for Improving Energy Efficiency of PV-Battery Hybrid System (태양광-배터리 하이브리드 전원시스템의 에너지 효율개선을 위한 규칙기반 협조제어 원리)

  • Yoo, Cheol-Hee;Chung, Il-Yop;Hong, Sung-Soo;Jang, Byung-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.12
    • /
    • pp.1791-1800
    • /
    • 2012
  • This paper presents effective design schemes for a photovoltaic (PV) and battery hybrid system that includes state-of-the-art technologies such as maximum power point tracking scheme for PV arrays, an effective charging/discharging circuit for batteries, and grid-interfacing power inverters. Compared to commonly-used PV systems, the proposed configuration has more flexibility and autonomy in controlling individual components of the PV-battery hybrid system. This paper also proposes an intelligent coordination scheme for the components of the PV-battery hybrid system to improve the efficiency of renewable energy resources and peak-load management. The proposed algorithm is based on a rule-based expert system that has excellent capability to optimize multi-objective functions. The proposed configuration and algorithms are investigated via switching-level simulation studies of the PV-battery hybrid system.

A study on the performance of 10kW Grid-Connected Photovoltaic Power Conditioning System with characteristics variation in inductor core materials (출력 필터 인덕터 코아 특성에 대한 10kW급 계통 연계형 태양광 PCS 성능 연구)

  • Lee, Kyoung-Jun;Min, Byung-Duk;Lee, Jong-Pil;Kim, Tae-Jin;Yoo, Dong-Wook;Kim, Hee-Je
    • Proceedings of the KIPE Conference
    • /
    • 2009.11a
    • /
    • pp.132-134
    • /
    • 2009
  • 신재생 에너지 분야에 적용되는 계통 연계형 인버터에서는 출력 전류 리플을 감소시키기 위하여 필터 인덕터가 필수적으로 사용된다. 현재 출력 인덕터로 적용될 수 있는 코아 재질로는 실리콘 함량이 2%정도인 일반 철심과 6.5% 정도인 슈퍼코아(Si 6.5%)와 Mega Flux 코아 정도가 있다. 본 논문에서는 각 코아별 특성을 살펴보고 인덕터 코아 특성 변화가 인버터의 효율 및 출력 전류의 THD에 미치는 영향을 인덕터의 값과 스위칭 주파수에 대해서 분석하였다. 또한 현재 시장에서 수요가 많은 10kW 태양광 인버터를 통하여 최적의 인덕터 설계에 대해 제시하고자 한다.

  • PDF