• Title/Summary/Keyword: Grid-connected Inverters

Search Result 133, Processing Time 0.025 seconds

Control Strategy Design of Grid-Connected and Stand-Alone Single-Phase Inverter for Distributed Generation

  • Cai, Fenghuang;Lu, Dexiang;Lin, Qiongbin;Wang, Wu
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1813-1820
    • /
    • 2016
  • Dual-mode photovoltaic power system should be capable of operating in grid-connected (GC) and stand-alone (SA) modes for distributed generation. Under different working modes, the optimal parameters of inverter output filters vary. Inverters commonly operate in GC mode, and thus, a small capacitance is beneficial to the GC topology for achieving a reasonable compromise. A predictive current control scheme is proposed to control the grid current in GC mode and thereby obtain high-performance power. As filter are not optimal under SA mode, a compound control strategy consisting of predictive current control, instantaneous voltage control, and repetitive control is proposed to achieve low total harmonic distortion and improve the output voltage spectrum. The seamless transfer between GC mode and SA mode is illustrated in detail. Finally, the simulation and experimental results of a 4 kVA prototype demonstrate the effectiveness of the proposed control strategy.

Optimal Control Design-based Gain Selection of an LCL-filtered Grid-connected Inverter in State-Space under Distorted Grid Environment

  • Tran, Vi-Thuy;Yoon, Seung-Jin;Kim, Kyeong-Hwa
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.344-345
    • /
    • 2018
  • In order to alleviate the negative impacts of harmonically distorted grid condition on grid-connect inverters, an optimal control design-based gain selection scheme of an LCL-filtered grid-connected inverter and its ability to compensate selective harmonics are presented in this paper. By incorporating resonant terms into the control structure in the state-space to provide infinity gain at selected frequencies, the proposed control offers an excellent steady-state response even under distorted grid voltage. The proposed control scheme is achieved by using a state feedback controller for stabilization purpose and by augmenting the resonant terms as well as intergral term into a control structure for reference tracking and harmonic compensation. Furthermore, the optimal linear quadratic control approach is adopted for choosing an optimal feedback gain to ensure an asymptotic stability of the whole system. A discrete-time full state observer is also introduced into the proposed control scheme for the purpose of reducing a total number of sensors used in the inverter system. The simulation results are given to prove the effectiveness and validity of the proposed control scheme.

  • PDF

Enhanced Controller Topology for Photovoltaic Sourced Grid Connected Inverters under Unbalanced Nonlinear Loading

  • Sivakumar, P.;Arutchelvi, Meenakshi Sundaram
    • Journal of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.369-382
    • /
    • 2014
  • A growing dynamic electrical demand has created an increasing interest in utilizing nonconventional energy sources like Photovoltaic (PV), wind power, etc. In this context, this paper focuses on the design and development of a composite power controller (CPC) in the decoupled double synchronous reference frame (DDSRF) combining the advantages of direct power control (DPC) and voltage oriented control (VOC) for a PV sourced grid connected inverter. In addition, a controller with the inherent active filter configuration is tested with nonlinear and unbalanced loads at the point of common coupling in both grid connected and autonomous modes of operation. Furthermore, the loss and reactive power compensation due to a non-fundamental component is also incorporated in the design, and the developed DDSRF model subsequently allows independent active and reactive power control. The proposed developed model of the controller is also implemented using MATLAB-Simulink-ISE and a Xilinx system generator which evaluate both the simulated and experimental setups. The simulation and experimental results confirm the validity of the developed model. Further, simulation results for the DPC are also presented and compared with the proposed CPC to further bring out the salient features of the proposed work.

A Novel Active Anti-islanding Method for Grid-connected Photovoltaic Inverter

  • Jung, Young-Seok;Choi, Jae-Ho;Yu, Gwon-Jong
    • Journal of Power Electronics
    • /
    • v.7 no.1
    • /
    • pp.64-71
    • /
    • 2007
  • This paper proposes a novel active frequency drift (AFD) method to improve the islanding detection performance with minimum current harmonics. To detect the islanding phenomenon of grid-connected photovoltaic (PV) inverters concerning the safety hazards and possible damage to other electric equipment, anti-islanding methods have been described. The AFD method that uses chopping fraction (cf) enables the islanding detection to drift up (or down) the frequency of the voltage during the islanding situation. However, the performance of the conventional AFD method is inefficient and causes difficulty in designing the appropriate cf value to meet the limit of harmonics. In this paper, the periodic chopping fraction based on a novel AFD method is proposed. This proposed method shows the analytical design value of cf to meet the test procedure of IEEE Std. 929-2000 with power quality and islanding detection time. To verify the validation of the proposed method, the islanding test results are presented. It is confirmed that the proposed method has not only less harmonic distortion but also better performance of islanding detection compared with the conventional AFD method.

Novel islanding detection method for grid connected PV system (계통연계형 태양광발전시스템의 새로운 단독운전 검출기법)

  • Jung, Young-Seok;So, Jung-Hun;Yu, Byung-Gyu;Yu, Gwon-Jong;Choi, Jae-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1705-1707
    • /
    • 2005
  • This paper proposes a novel active frequency drift(AFD) method for the islanding prevention of grid-connected photovoltaic inverter. To detect the islanding phenomenon of grid-connected photovoltaic(PV) inverters concerning about the safety hazards and the damage to other electric equipments, many kinds of anti-islanding methods have been presented. Among them, AFD method using chopping fraction(cf) enables the islanding detection to drift up(or down) the frequency of the voltage during the islanding situation. However, the performance of the conventional AFD methods, which have a certain value of cf only, is inefficient and difficult to design the appropriate cf value analytically to meet the limit of harmonics. In this paper, the periodic chopping fraction based on an AFD method is proposed. This proposed method shows the analytical design value of cf to meet the test procedure of IEEE Std. 929-2000 with the power quality and islanding detection time. To verify the validation of the proposed method, the islanding test results are presented. It is confirmed that the proposed method has not only less harmonic distortion but also good performance of islanding detection compare with the conventional AFD method.

  • PDF

Anti-Islanding Scheme for a Number of Grid-connected Inverters under Parallel Operation (병렬연결된 다수 대 계통연계형 인버터를 위한 단독운전 방지 기법)

  • Kim, Dong-Gyun;Park, Kwan-nam;Cho, Sang-Yoon;Lee, Young-Kwoun;Yu, Gwon-Jong;Song, Seung-Ho;Choy, Ick;Choi, Ju-Yeop
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.351-352
    • /
    • 2016
  • Since anti-islanding scheme of grid-connected inverter is a key function of standards compliance, unintentional islanding results in safety hazards, reliability, and many other issues. Therefore, many anti-islanding schemes have been researched, however, existing anti-islanding schemes show poor power quality and non-detection zone issues. Besides, most of them have problems which deteriorate performance of islanding detection under parallel-operation. Therefore, this paper proposes a new anti-islanding scheme that has both negligible power quality degradation, no non-detection zone and precise islanding detection under parallel-operation. Finally, both simulation and experimental results validate the proposed scheme.

  • PDF

Islanding detection of grid-connected photovoltaic inverters using Automatic phase-shift method (계통연계형 PV 인버터의 자동 위상 이동법에 의한 고립운전 검출)

  • Yun, Jung-Hyeok;Kim, Heung-Geun;Choi, Jong-Woo;Chun, Tae-Won;Lee, Hong-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.591-594
    • /
    • 2005
  • Islanding of PV systems occurs when the uitilty grid is removed but local sources continue to operate and provide power to local loads. Islanding Is one of the serious problems in an electric power system connected with dispersed power sources. Also, this scan present safety hazards and the possibility of damage to other electric equipments. If the real and reactive power of RLC load and PV system are closely matched, islanding phenomena can't be detected by the passive methods. Several active methods were proposed to detect islanding phenomena. The most effective method is SFS method which was suggested by Sandia National Laboratory. In this paper, a new anti-islanding algorithm is proposed and its validity is verified through simulation and experimental results for utility interconnection of PV system.

  • PDF

A Hysteresis Current Controller for PV-Wind Hybrid Source Fed STATCOM System Using Cascaded Multilevel Inverters

  • Palanisamy, R.;Vijayakumar, K.
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.270-279
    • /
    • 2018
  • This paper elucidates a hysteresis current controller for enhancing the performance of static synchronous compensator (STATCOM) using cascaded H-bridge multilevel inverter. Due to the rising power demand and growing conventional generation costs a new alternative in renewable energy source is gaining popularity and recognition. A five level single phase cascaded multilevel inverter with two separated dc sources, which is energized by photovoltaic - wind hybrid energy source. The voltages across the each dc source is balanced and standardized by the proposed hysteresis current controller. The performance of STATCOM is analyzed by connecting with grid connected system, under the steady state & dynamic state. To reduce the Total Harmonic Distortion (THD) and to improve the output voltage, closed loop hysteresis current control is achieved using PLL and PI controller. The performance of the proposed system is scrutinized through various simulation results using matlab/simulink and hardware results are also verified with simulation results.

An Adaptive Digital Notch Filter for Stabilization of Single-Phase Grid-Connected Inverters With LCL Filter (LCL 필터가 결합된 단상 계통연계형 인버터의 안정화를 위한 적응형 디지털 노치 필터)

  • Heo, Jin-Yong;Kim, Hak-Soo;Nho, Eui-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.5
    • /
    • pp.307-314
    • /
    • 2021
  • Even though the LCL filters have superior harmonic attenuation ability to L filters, stability has always been an issue. The system could be unstable because of the resonance phenomenon, especially when digital controller is used. Adding a notch filter to the compensator is one approach to solve the problem. Resonance phenomenon can be inhibited by aligning notch frequency to system resonance frequency. However, resonance frequency variation can be obtained because the actual system has a nonstationary characteristic. Therefore, the system could be unstable, where the system parameters are changed when the conventional notch filter is used. An adaptive digital notch filter that stabilizes the system even system parameters are changed. Simulation and experiment results are provided to verify the validity of the proposed adaptive filter.

Performance Comparison of Common-Mode Voltage Reduction PWM Methods in Terms of Modulation Index (변조지수에 따른 공통모드 전압 저감 PWM 기법 성능 비교)

  • Heo, Geon;Park, Yongsoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.2
    • /
    • pp.135-140
    • /
    • 2021
  • This study introduces a new pulse width modulation (PWM) method to reduce common-mode voltages (CMVs) and then compares its performance with other reduced CMV-PWM (RCMV-PWM) methods. CMVs should be reduced to ensure the electromagnetic compatibility and safety of grid-connected inverters. RCMV-PWM methods attempt to synthesize voltage references without zero vectors, which cause high CMV peaks. In these methods, the peak-to-peak magnitude of CMVs can be reduced by one-third of the conventional space-vector PWM. The introduced method splits every reference vector into two vectors to avoid the use of zero vectors. The performances of the RCMV-PWM methods are analyzed in accordance with the modulation index through simulation and experiment.