• Title/Summary/Keyword: Grid-based data

Search Result 1,145, Processing Time 0.03 seconds

Performance Evaluation of FDS for Predicting the Unsteady Fire Characteristics in a Semi-Closed ISO 9705 Room (반밀폐된 ISO 9705 화재실에서 비정상 화재특성 예측을 위한 FDS의 성능평가)

  • Mun, Sun-Yeo;Hwang, Cheol-Hong
    • Fire Science and Engineering
    • /
    • v.26 no.3
    • /
    • pp.21-28
    • /
    • 2012
  • The objective of this study is to evaluate the prediction accuracy of FDS(Fire Dynamic Simulator) for the thermal and chemical characteristics of under-ventilated fire with unsteady fire growth in a semi-closed compartment. To this end, a standard doorway width of the full-scale ISO 9705 room was modified to 0.1 m and the flow rate of heptane fuel was increased linearly with time (until maximum 2.0 MW based on ideal heat release rate) using a spray nozzle located at the center of enclosure. To verify the capability of FDS, the predicted results were compared with a previous experimental data under the identical fire conditions. It was observed that with an appropriate grid system, the numerically predicted temperature and heat flux inside the compartment showed reasonable agreement with the experimental data. On the other hand, there were considerable limitations to predict accurately the unsteady behaviors of CO and $CO_2$ concentration under the condition of continuous fire growth. These results leaded to a discrepancy between the present evaluation of FDS and the previous evaluation conducted for steady-state under-ventilated fires. It was important to note that the prediction of transient CO production characteristics using FDS was approached carefully for the under-ventilated fire in a semi-closed compartment.

Groundwater Recharge Estimation for the Gyeongan-cheon Watershed with MIKE SHE Modeling System (MIKE SHE 모형을 이용한 경안천 유역의 지하수 함양량 산정)

  • Kim, Chul-Gyum;Kim, Hyeon-Jun;Jang, Cheol-Hee;Im, Sang-Jun
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.6 s.179
    • /
    • pp.459-468
    • /
    • 2007
  • To estimate the groundwater recharge, the fully distributed parameter based model, MIKE SHE was applied to the Gyeongan-cheon watershed which is one of the tributaries of Han River Basin, and covers approximately $260km^2$ with about 49 km main stream length. To set up the model, spatial data such as topography, land use, soil, and meteorological data were compiled, and grid size of 200m was applied considering computer ability and reliability of the results. The model was calibrated and validated using a split sample procedure against 4-year daily stream flows at the outlet of the watershed. Statistical criteria for the calibration and validation results indicated a good agreement between the simulated and observed stream flows. The annual recharges calculated from the model were compared with the values from the conventional groundwater recession curve method, and the simulated groundwater levels were compared with the observed values. As a result, it was concluded that the model could reasonably simulate the groundwater level and recharge, and could be a useful tool for estimating spatially/temporally the groundwater recharges, and enhancing the analysis of the watershed water cycle.

Seismic First Arrival Time Computation in 3D Inhomogeneous Tilted Transversely Isotropic Media (3차원 불균질 횡등방성 매질에 대한 탄성파 초동 주시 모델링)

  • Jeong, Chang-Ho;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.3
    • /
    • pp.241-249
    • /
    • 2006
  • Due to the long tectonic history and the very complex geologic formations in Korea, the anisotropic characteristics of subsurface material may often change very greatly and locally. The algorithms commonly used, however, may not give sufficiently precise computational results of traveltime data particularly for the complex and strong anisotropic model, since they are based on the two-dimensional (2D) earth and/or weak anisotropy assumptions. This study is intended to develope a three-dimensional (3D) modeling algorithm to precisely calculate the first arrival time in the complex anisotropic media. Considering the complex geology of Korea, we assume 3D TTI (tilted transversely isotropy) medium having the arbitrary symmetry axis. The algorithm includes the 2D non-linear interpolation scheme to calculate the traveltimes inside the grid and the 3D traveltime mapping to fill the 3D model with first arrival times. The weak anisotropy assumption, moreover, can be overcome through devising a numerical approach of the steepest descent method in the calculation of minimum traveltime, instead of using approximate solution. The performance of the algorithm developed in this study is demonstrated by the comparison of the analytic and numerical solutions for the homogeneous anisotropic earth as well as through the numerical experiment for the two layer model whose anisotropic properties are greatly different each other. We expect that the developed modeling algorithm can be used in the development of processing and inversion schemes of seismic data acquired in strongly anisotropic environment, such as migration, velocity analysis, cross-well tomography and so on.

Numerical Experiment of Driftwood Generation and Deposition Patterns by Tsunami (쓰나미에 의한 유목의 생성과 퇴적패턴의 수치모의실험)

  • Kang, Tae Un;Jang, Chang-Lae;Lee, Nam Joo;Lee, Won Ho
    • Ecology and Resilient Infrastructure
    • /
    • v.8 no.4
    • /
    • pp.165-178
    • /
    • 2021
  • We studied driftwood behaviors including generation and deposition in a tsunami using a numerical simulation. We used an integrated two-dimensional numerical model, which included a driftwood dynamics model. The study area was Sendai, Japan. Observation data collected by Inagaki et al. (2012) were used to verify the simulation results by comparing them with driftwood deposition patterns. A simplified model was developed to consider the threshold of driftwood generation by the drag force of water flows. To consider the volume of driftwood generated, we estimated the total wood number in the study area using Google Earth. Therefore, we simulated more than 13,000 pieces of driftwood that were generated and transported inland from approximately 300,000 trees that were growing in the forest. The final distribution of the driftwood was similar to the observation data. The reproducibility of the generation and deposition patterns of driftwood showed good agreement in terms of longitudinal deposition pattern. In the future, a sensitivity analysis on driftwood parameters, such as the size of the wood, boundary conditions, and grid size, will be implemented to predict the travel patterns of driftwood. Such modeling will be a useful methodology for disaster prediction based on water flow and driftwood.

Derivation of Synergistic Aerosol Model by Using the ECMWF/MACC and OPAC (ECMWF/MACC와 OPAC자료를 이용한 시너지 에어로솔 모델 산출)

  • Lee, Kwon-Ho;Lee, Kyu-Tae;Mun, Gwan-Ho;Kim, Jung-ho;Jung, Kyoung-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.857-868
    • /
    • 2018
  • The microphysics and spatio-temporal distribution of atmospheric aerosols are responsible for estimating the optical properties at a given location. Its accurate estimation is essential to plan efficient simulation for radiative transfer. For this sake, synergetic use of reanalysis data with optics database was used as a potential tool to precisely derive the aerosol model on the basis of the major representative particulates exist within a model grid. In detail, mixing of aerosol types weighted by aerosol optical depth (AOD) components has been developed. This synergetic aerosol model (SAM) is spectrally extended up to $40{\mu}m$. For the major aerosol event cases, SAM showed that the mixed aerosol particles were totally different from the typical standard aerosol models provided by the radiative transfer model. The correlation among the derived aerosol optical properties along with ground-based observation data has also been compared. The current results will help to improve the radiative transfer model simulation under the real atmospheric environment.

Selection framework of representative general circulation models using the selected best bias correction method (최적 편이보정 기법의 선택을 통한 대표 전지구모형의 선정)

  • Song, Young Hoon;Chung, Eun-Sung;Sung, Jang Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.5
    • /
    • pp.337-347
    • /
    • 2019
  • This study proposes the framework to select the representative general circulation model (GCM) for climate change projection. The grid-based results of GCMs were transformed to all considered meteorological stations using inverse distance weighted (IDW) method and its results were compared to the observed precipitation. Six quantile mapping methods and random forest method were used to correct the bias between GCM's and the observation data. Thus, the empirical quantile which belongs to non-parameteric transformation method was selected as a best bias correction method by comparing the measures of performance indicators. Then, one of the multi-criteria decision techniques, TOPSIS (Technique for Order of Preference by Ideal Solution), was used to find the representative GCM using the performances of four GCMs after the bias correction using empirical quantile method. As a result, GISS-E2-R was the best and followed by MIROC5, CSIRO-Mk3-6-0, and CCSM4. Because these results are limited several GCMs, different results will be expected if more GCM data considered.

Estimation of Potential Risk and Numerical Simulations of Landslide Disaster based on UAV Photogrammetry (무인 항공사진측량 정보를 기반으로 한 산사태 수치해석 및 위험도 평가)

  • Choi, Jae Hee;Choi, Bong Jin;Kim, Nam Gyun;Lee, Chang Woo;Seo, Jun Pyo;Jun, Byong Hee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.6
    • /
    • pp.675-686
    • /
    • 2021
  • This study investigated the ground displacement occurring in a slope below a waste-rock dumping site and estimated the likelihood of a disaster due to a landslide. To start with, photogrammetry was conducted by unmanned aerial vehicles (UAVs) to investigate the size and extent of the ground displacement. From April 2019 to July 2020, the average error rate of the five UAV surveys was 0.011-0.034 m, and an elevation change of 2.97 m occurred due to the movement of the soil layer. Only some areas of the slope showedelevation change, and this was believed to be due to thegroundwater generated during rainfall rather than the effect of the waste-rock load at the top. Sensitivity analysis for LS-RAPID simulation was performed, and the simulation results were compared and analyzed by applying a digital elevation model (DEM) and a digital surface model (DSM)as terrain data with 10 m, 5 m, and 4 m grids. When data with high spatial resolution were used, the extent of the sedimentation of landslide material tended to be excessively expanded in the DEM. In contrast, in the result of applying a DSM, which reflects the topography in detail, the diffusion range was not significantly affected even when the spatial resolution was changed, and the sedimentation behavior according to the river shape could be accurately expressed. As a result, it was concluded that applying a DSM rather than a DEM does not significantly expand the sedimentation range, and results that reflect the site situation well can be obtained.

A Study on the Optimal Site Selection by Constraint Mapping and Park Optimization for Offshore Wind Farm in the Southwest Coastal Area (서남해 연안 해상풍력 발전단지 지리적 적합지 선정 및 최적배치에 관한 연구)

  • Jung-Ho, Kim;Geon-Hwa, Ryu;Hong-Chul, Son;Young-Gon, Kim;Chae-Joo, Moon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.6
    • /
    • pp.1145-1156
    • /
    • 2022
  • In order to effectively secure site suitability for the development of large-scale offshore wind farms, it is essential to minimize the environmental impact of development and analyze the conflicts of benefit between social, ecological, and economic core values. In addition, a preliminary review of site adequacy must be preceded in order not to collide with other used areas in the marine spatial plan. In addition, it is necessary to conduct local meteorological characteristics analysis including wind resources near Jeollanam-do area before project feasibility study. Therefore, wind resource analysis was performed using the observation data of the meteorological mast installed in Wangdeungnyeo near Anmado, Yeonggwang, and the optimal site was selected after excluding geographical constraints related to the location of the offshore wind farm. In addition, the annual energy production was calculated by deriving the optimal wind farm arrangement results suitable for the local wind resources characteristics based on WindSim SW, and it is intended to be used as basic research data for site discovery and selection of suitable sites for future offshore wind farm projects.

Prediction of Urban Flood Extent by LSTM Model and Logistic Regression (LSTM 모형과 로지스틱 회귀를 통한 도시 침수 범위의 예측)

  • Kim, Hyun Il;Han, Kun Yeun;Lee, Jae Yeong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.3
    • /
    • pp.273-283
    • /
    • 2020
  • Because of climate change, the occurrence of localized and heavy rainfall is increasing. It is important to predict floods in urban areas that have suffered inundation in the past. For flood prediction, not only numerical analysis models but also machine learning-based models can be applied. The LSTM (Long Short-Term Memory) neural network used in this study is appropriate for sequence data, but it demands a lot of data. However, rainfall that causes flooding does not appear every year in a single urban basin, meaning it is difficult to collect enough data for deep learning. Therefore, in addition to the rainfall observed in the study area, the observed rainfall in another urban basin was applied in the predictive model. The LSTM neural network was used for predicting the total overflow, and the result of the SWMM (Storm Water Management Model) was applied as target data. The prediction of the inundation map was performed by using logistic regression; the independent variable was the total overflow and the dependent variable was the presence or absence of flooding in each grid. The dependent variable of logistic regression was collected through the simulation results of a two-dimensional flood model. The input data of the two-dimensional flood model were the overflow at each manhole calculated by the SWMM. According to the LSTM neural network parameters, the prediction results of total overflow were compared. Four predictive models were used in this study depending on the parameter of the LSTM. The average RMSE (Root Mean Square Error) for verification and testing was 1.4279 ㎥/s, 1.0079 ㎥/s for the four LSTM models. The minimum RMSE of the verification and testing was calculated as 1.1655 ㎥/s and 0.8797 ㎥/s. It was confirmed that the total overflow can be predicted similarly to the SWMM simulation results. The prediction of inundation extent was performed by linking the logistic regression with the results of the LSTM neural network, and the maximum area fitness was 97.33 % when more than 0.5 m depth was considered. The methodology presented in this study would be helpful in improving urban flood response based on deep learning methodology.

A Mobile Landmarks Guide : Outdoor Augmented Reality based on LOD and Contextual Device (모바일 랜드마크 가이드 : LOD와 문맥적 장치 기반의 실외 증강현실)

  • Zhao, Bi-Cheng;Rosli, Ahmad Nurzid;Jang, Chol-Hee;Lee, Kee-Sung;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.1
    • /
    • pp.1-21
    • /
    • 2012
  • In recent years, mobile phone has experienced an extremely fast evolution. It is equipped with high-quality color displays, high resolution cameras, and real-time accelerated 3D graphics. In addition, some other features are includes GPS sensor and Digital Compass, etc. This evolution advent significantly helps the application developers to use the power of smart-phones, to create a rich environment that offers a wide range of services and exciting possibilities. To date mobile AR in outdoor research there are many popular location-based AR services, such Layar and Wikitude. These systems have big limitation the AR contents hardly overlaid on the real target. Another research is context-based AR services using image recognition and tracking. The AR contents are precisely overlaid on the real target. But the real-time performance is restricted by the retrieval time and hardly implement in large scale area. In our work, we exploit to combine advantages of location-based AR with context-based AR. The system can easily find out surrounding landmarks first and then do the recognition and tracking with them. The proposed system mainly consists of two major parts-landmark browsing module and annotation module. In landmark browsing module, user can view an augmented virtual information (information media), such as text, picture and video on their smart-phone viewfinder, when they pointing out their smart-phone to a certain building or landmark. For this, landmark recognition technique is applied in this work. SURF point-based features are used in the matching process due to their robustness. To ensure the image retrieval and matching processes is fast enough for real time tracking, we exploit the contextual device (GPS and digital compass) information. This is necessary to select the nearest and pointed orientation landmarks from the database. The queried image is only matched with this selected data. Therefore, the speed for matching will be significantly increased. Secondly is the annotation module. Instead of viewing only the augmented information media, user can create virtual annotation based on linked data. Having to know a full knowledge about the landmark, are not necessary required. They can simply look for the appropriate topic by searching it with a keyword in linked data. With this, it helps the system to find out target URI in order to generate correct AR contents. On the other hand, in order to recognize target landmarks, images of selected building or landmark are captured from different angle and distance. This procedure looks like a similar processing of building a connection between the real building and the virtual information existed in the Linked Open Data. In our experiments, search range in the database is reduced by clustering images into groups according to their coordinates. A Grid-base clustering method and user location information are used to restrict the retrieval range. Comparing the existed research using cluster and GPS information the retrieval time is around 70~80ms. Experiment results show our approach the retrieval time reduces to around 18~20ms in average. Therefore the totally processing time is reduced from 490~540ms to 438~480ms. The performance improvement will be more obvious when the database growing. It demonstrates the proposed system is efficient and robust in many cases.