• Title/Summary/Keyword: Grid test

Search Result 952, Processing Time 0.03 seconds

Developement for Pretreatment System of Distributed Power Generation by using Livestock BIO-ENERGY (축산폐기물 바이오 에너지 분산발전용 전처리시스템 개발)

  • Hur, Kwang-Beom;Park, Jung-Keuk;Lee, Jung-Bin;Rhim, Sang-Gyu;Kim, Jae-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.585-588
    • /
    • 2007
  • As the distributed generation becomes more reliable and economically feasible, it is expected that a higher application of the distributed generation units would be interconnected to the existing grids. This new generation technology is linked to a large number of factors like economics and performance, safety and reliability, market regulations, environmental issues, or grid connection constrains. KEPCO (Korea Electric Power Corporation) is performing the project to develope the Distributed Micro Gas Turbine (MGT) technolgies by using Swine BIO-ENERGY. This paper describes the plans and strategies for the renewable energy of MGT on actual grid-connection under Korean situations. KEPCO also, has a research plan on bio-gas pretreatment system applicable to our domestic swine renewable resources and is performing concept design of pilot plant to test grid operation. In addition, this testing will be conducted in order to respond to a wide variety of needs for application and economic evaluation in the field of On-site generation.

  • PDF

Evaluation of Operation Reliability for Micro Gas Turbine(MGT) Power Generation System (마이크로 가스터빈 발전시스템 운전신뢰성평가)

  • Kim, Jae-Hoon;Hur, Kwang-Beom
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.5 s.122
    • /
    • pp.448-455
    • /
    • 2007
  • As Decentralized Generation(DG) becomes more reliable and economically feasible, it is expected that a higher application of DG units would be interconnected to the existing grids. This new market penetration of DG technologies is linked to a large number of factors like technologies costs and performances, interconnection issues, safety, market regulations, environmental issues or grid connection constrains. This paper describes the procedures and results for the mechanical, electrical, and environmental tests of MGT on actual grid-connection under Korean regulations. As one of the achievements, the simulation model of MGT was developed, so that it will be able to analyze or propose new distributed generation system using MGT. The field test was conducted in order to respond to a wide variety of needs for noise reduction and utilization and its performance was evaluated in consideration of its operational problems. The MGT is successfully supplying electricity to Korean grids with satisfying various regulations. The suggested strategy and experience for the evaluation of the distributed generation will be used for the introduction of other distributed generation technologies into the grid in the future.

DEVELOPMENT OF GENERAL PURPOSE THERMO/FLUID FLOW ANALYSIS PROGRAM NUFLEX (범용 열/유체 유동해석 프로그램 NUFLEX의 개발)

  • Hur, Nahm-Keon;Won, Chan-Shik;Ryou, Hong-Sun;Son, Gi-Hun;Kim, Sa-Ryang
    • Journal of computational fluids engineering
    • /
    • v.12 no.2
    • /
    • pp.8-13
    • /
    • 2007
  • A general purpose program NUFLEX for the analysis 3-D thermo/fluid flow and pre/post processor in complex geometry has been developed, which consists of a flow solver based on FVM and GUI based pre/post processor. The solver employs a general non-orthogonal grid system with structured grid and solves laminar and turbulent flows with standard/RNG $k-{\varepsilon}$ turbulence model. In addition, NUFLEX is incorporated with various physical models, such as interfacial tracking, cavitation, MHD, melting/solidification and spray models. For the purpose of evaluation of the program and testing the applicability, many actual problems are solved and compared with the available data. Comparison of the results with that by STAR-CD or FLUENT program has been also made for the same flow configuration and grid structure to test the validity of NUFLEX.

Dismountable steel tensegrity grids as alternate roof structures

  • Panigrahi, Ramakanta;Gupta, Ashok;Bhalla, Suresh
    • Steel and Composite Structures
    • /
    • v.9 no.3
    • /
    • pp.239-253
    • /
    • 2009
  • This paper reviews the concept of tensegrity structures and proposes a new type of dismountable steel tensegrity grids for possible deployment as light-weight roof structures. It covers the fabrication of the prototype structures followed by their instrumentation, destructive testing and numerical analysis. First, a single module, measuring $1m{\times}1m$ in size, is fabricated based on half-cuboctahedron configuration using galvanised iron (GI) pipes as struts and high tensile stranded cables as tensile elements. Detailed instrumentation of the structure is carried out right at the fabrication stage. The structure is thereafter subjected to destructive test during which the strain and the displacement responses are carefully monitored. The structure is modelled and analyzed using finite element method (FEM) and the model generated is updated with the experimental results. The investigations are then extended to a $2{\times}2$ grid, measuring $2m{\times}2m$ in size, fabricated uniquely by the cohesive integration of four single tensegrity modules. After updating and validating on the $2{\times}2$ grid, the finite element model is extended to a $8{\times}8$ grid (consisting of 64 units and measuring $8m{\times}8m$) whose behaviour is studied in detail for various load combinations expected to act on the structure. The results demonstrate that the proposed tensegrity grid structures are not only dismountable but also exhibit satisfactory behaviour from strength and serviceability point of view.

Performance Testing of the Permanent Magnet Generator and Grid Inverter (영구자석형 발전기와 계통연계형 인버터의 성능실험)

  • Kim, Hyoung-Gil;Kim, Chul-Ho;Seo, Young-Taek
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.679-680
    • /
    • 2008
  • Most of the small wind turbines are set as the stand alone type in the area where the access to the grid is difficult and compulsorily uses the battery. Depending on the volume of the battery, securing of the space necessary, and has the shortcoming of replacing the battery periodically due to it's limited working life span. Recently, setting up in the vicinity of the city area is increasing and the trend of using the Grid inverter instead of battery is also increasing. This thesis is aiming mainly analyzing the characteristics of the output power of the Prototype Permanent Magnet Generator(PMG) and the Grid-Inverter and to verify through the theoretical study and tests. Tested the characteristics of the output power of the PMG through the stage 1-2 and at the stage 3 connected the output of the PMG to the Inverter and tested the characteristics of the Inverter. And at the stage 4, the maximum output power is confirmed by the continuous running test of the PMG.

  • PDF

OPTIMAL SHAPE DESIGN OF A S-SHAPED SUBSONIC INTAKE USING NURBS (NURBS를 이용한 S형 천음속 흡입관 최적 설계)

  • Lee B.J.;Kim C.
    • Journal of computational fluids engineering
    • /
    • v.11 no.1 s.32
    • /
    • pp.57-66
    • /
    • 2006
  • An optimal shape design approach is presented for a subsonic S-shaped intake using aerodynamic sensitivity analysis. Two-equation turbulence model is employed to capture strong counter vortices in the S-shaped duct more precisely. Sensitivity analysis is performed for the three-dimensional Navier-Stokes equations coupled with two-equation turbulence models using a discrete adjoint method For code validation, the result of the flow solver is compared with experiment data and other computational results of bench marking test. To study the influence oj turbulence models and grid refinement on the duct flow analysis, the results from several turbulence models are compared with one another and the minimum number of grid points, which can yield an accurate solution is investigated The adjoint variable code is validated by comparing the complex step derivative results. To realize a sufficient and flexible design space, NURBS equations are introduced as a geometric representation and a new grid modification technique, Least Square NURBS Grid Approximation is applied With the verified flow solver, the sensitivity analysis code and the geometric modification technique, the optimization of S-shaped intake is carried out and the enhancement of overall intake performance is achieved The designed S-shaped duct is tested in several off-design conditions to confirm the robustness of the current design approach. As a result, the capability and the efficiency of the present design tools are successfully demonstrated in three-dimensional highly turbulent internal flow design and off-design conditions.

DEVELOPMENT OF GENERAL PURPOSE THERMO/FLUID FLOW ANALYSIS PROGRAM NUFLEX (범용 열/유체 유동해석 프로그램 NUFLEX의 개발)

  • Hur, Nahm-Keon;Won, Chan-Shik;Ryou, Hong-Sun;Son, Gi-Hun;Kim, Sa-Ryang
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.87-90
    • /
    • 2007
  • A general purpose program NUFLEX for the analysis 3-D thermo/fluid flow and pre/post processor in complex geometry has been developed, which consists of a flow solver based on FVM and GUI based pre/post processor. The solver employs a general non-orthogonal grid system with structured grid and solves laminar and turbulent flows with standard/RNG ${\kappa}-{\varepsilon}\;SST$ turbulence model. In addition, NUFLEX is incorporated with various physical models, such as interfacial tracking, cavitation, MHD, melting/solidification and spray model. For the purpose of verification of the program and testing the applicability, many actual problems are solved and compared with the available data. Comparison of the results with that by STAR-CD or FLUENT program has been also made for the same flow configuration and grid structure to test the validity of NUFLEX.

  • PDF

Performance Analysis of Anti-islanding Function for Grid-connected PV Inverter Systems under Parallel Connections (병렬운전하는 계통연계형 태양광 발전용 인버터의 단독운전 검출 성능 분석)

  • Jung, Young-Seok;Yu, Byung-Gyu;Kang, Gi-Hwa
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.5
    • /
    • pp.34-40
    • /
    • 2013
  • Islanding phenomenon of photovoltaic system is undesirable because it leads to a safety hazard to utility service personnel and may cause damage to power generation and power supply facilities as a result of unsynchronized re-closure. Anti-islanding protection is an important technical requirement for grid-connected PV system. Until now, various anti-islanding methods for detecting and preventing islanding of photovoltaic and other distributed generations have been proposed. Most of them are focusing on the anti-islanding performance of single PV system according to the related international and domestic standard test procedures. There are few studies on the islanding phenomenon for multiple photovoltaic operation in parallel. This paper presents performance analysis of anti-islanding function for grid-connected PV inverter systems when several PV inverters are connected in parallel.

Variable amplitude fatigue test of M30 high-strength bolt in bolt-sphere joint grid structures

  • Qiu, Bin;Lei, Honggang;Yang, Xu;Zhou, Zichun;Wang, Guoqing
    • Steel and Composite Structures
    • /
    • v.33 no.3
    • /
    • pp.433-444
    • /
    • 2019
  • Fatigue failure of a grid structure using bolt-sphere joints is liable to occur in a high-strength bolt due to the alternating and reciprocal actions of a suspension crane. In this study, variable amplitude fatigue tests were carried out on 20 40 Cr steel alloy M30 high-strength bolts using an MTS fatigue testing machine, and four cyclic stress amplitude loading patterns, Low-High, High-Low, Low-High-Low, and High-Low-High, were tested. The scanning electron microscope images of bolt fatigue failure due to variable amplitude stress were obtained, and the fractographic analysis of fatigue fractures was performed to investigate the fatigue failure mechanisms. Based on the available data from the constant amplitude fatigue tests, the variable amplitude fatigue life of an M30 high-strength bolt in a bolt-sphere joint was estimated using both Miner's rule and the Corten-Dolan model. Since both cumulative damage models gave similar predictions, Miner's rule is suggested for estimating the variable-amplitude fatigue life of M30 high-strength bolts in a grid structure with bolt-sphere joints; the S-N fatigue curve of the M30 high-strength bolts under variable amplitude loading was derived using equivalent stress amplitude as a design parameter.

Deep Learning-Based Smart Meter Wattage Prediction Analysis Platform

  • Jang, Seonghoon;Shin, Seung-Jung
    • International journal of advanced smart convergence
    • /
    • v.9 no.4
    • /
    • pp.173-178
    • /
    • 2020
  • As the fourth industrial revolution, in which people, objects, and information are connected as one, various fields such as smart energy, smart cities, artificial intelligence, the Internet of Things, unmanned cars, and robot industries are becoming the mainstream, drawing attention to big data. Among them, Smart Grid is a technology that maximizes energy efficiency by converging information and communication technologies into the power grid to establish a smart grid that can know electricity usage, supply volume, and power line conditions. Smart meters are equient that monitors and communicates power usage. We start with the goal of building a virtual smart grid and constructing a virtual environment in which real-time data is generated to accommodate large volumes of data that are small in capacity but regularly generated. A major role is given in creating a software/hardware architecture deployment environment suitable for the system for test operations. It is necessary to identify the advantages and disadvantages of the software according to the characteristics of the collected data and select sub-projects suitable for the purpose. The collected data was collected/loaded/processed/analyzed by the Hadoop ecosystem-based big data platform, and used to predict power demand through deep learning.