• Title/Summary/Keyword: Grid system

Search Result 4,073, Processing Time 0.034 seconds

Techno-economic design of a grid-tied Photovoltaic system for a residential building

  • Asad A. Naqvi;Talha Bin Nadeem;Ahsan Ahmed;Muhammad Uzair;S. Asad Ali Zaidi
    • Advances in Energy Research
    • /
    • v.8 no.1
    • /
    • pp.59-71
    • /
    • 2022
  • Increasing cost of electricity due to rising price of fuel is one of the local community's main issues. In this research, switching of grid dependent system to the grid-tied Photovoltaic (PV) system with net metering for a residential building is proposed. The system is designed by considering the maximum energy demand of the building. The designed system is analyzed using RETScreen on technical, economic and environmental grounds. It is found that the system is able to produce 12,000 kWh/year. The system is capable to fulfill the electricity demand of the building during day time and is also capable to sell the energy to the local grid causing the electric meter to run in reverse direction. During night time, electricity will be purchased from grid, and electric meter will run in the forward direction. The system is economically justified with a payback period of only 3 years with net present value of PKR. 4,758,132. Also, the system is able to reduce 7.2 tons of CO2 not produced in the entire life of the project.

Mechanism Analysis and Stabilization of Three-Phase Grid-Inverter Systems Considering Frequency Coupling

  • Wang, Guoning;Du, Xiong;Shi, Ying;Tai, Heng-Ming;Ji, Yongliang
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.853-862
    • /
    • 2018
  • Frequency coupling in the phase domain is a recently reported phenomenon for phase locked loop (PLL) based three-phase grid-inverter systems. This paper investigates the mechanism and stabilization method for the frequency coupling to the stability of grid-inverter systems. Self and accompanying admittance models are employed to represent the frequency coupling characteristics of the inverter, and a small signal equivalent circuit of a grid-inverter system is set up to reveal the mechanism of the frequency coupling to the system stability. The analysis reveals that the equivalent inverter admittance is changed due to the frequency coupling of the inverter, and the system stability is affected. In the end, retuning the bandwidth of the phase locked loop is presented to stabilize the three-phase grid-inverter system. Experimental results are given to verify the analysis and the stabilization scheme.

Formation Strategy of Renewable Energy Sources for High Mountain Off-grid System Considering Sustainability (지속가능성을 고려한 산악지역 독립망 전력시스템의 신재생 에너지원 구성 전략)

  • Ahn, Sung-Hoon;Lee, Kyung-Tae;Bhandari, Binayak;Lee, Gil-Yong;Lee, Caroline Sun-Yong;Song, Chul-Ki
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.9
    • /
    • pp.958-963
    • /
    • 2012
  • Characteristics of off-grid hybrid renewable energy sources for high mountain villages are discussed. Considering reliability of electric power generation, Photovoltaic (PV)-wind hybrid and PV-hydro hybrid system are suggested. Connecting two or more villages with these hybrid systems, an extended hybrid off-grid can be formed. Sustainability of entire system is important in design of off-grid system, and income generation of the village people using the electricity should be considered.

The Analysis of Active Power Control Requirements in the Selected Grid Codes for Wind Farm

  • Kim, Mi-Young;Song, Yong-Un
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1408-1414
    • /
    • 2015
  • The renewable energies such as photovoltaic power, wind power and biomass have grown to a greater extent as decarbonization techniques. The renewable energies are interconnected to power systems (or electrical grids) in order to increase benefits from economies of scale, and the extra attention is focused on the Grid Code. A grid code defines technical parameters that power plants must meet to ensure functions of power systems, and the grid code determined by considering power system characteristics is various across the country. Some TSO (Transmission System Operator) and ISO (Independent System Operator) have issued grid code for wind power and the special requirements for offshore wind farm. The main purpose of the above grid code is that wind farm in power systems has to act as the existing power plants. Therefore wind farm developer and wind turbine manufacturer have great difficulty in grasping and meeting grid code requirements. This paper presents the basic understanding for grid codes of developed countries in the wind power and trends of those technical requirements. Moreover, in grid code viewpoint, the active power control of wind power is also discussed in details.

Novel DC Grid Connection Topology and Control Strategy for DFIG-based Wind Power Generation System

  • Yi, Xilu;Nian, Heng
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.4
    • /
    • pp.466-472
    • /
    • 2013
  • The paper presents a novel DC grid connection topology and control strategy for doubly-fed induction generator (DFIG) based wind power generation system. In order to achieve the wind power conversion, the stator side converter and the rotor side converter is used to implement the DFIG control based on the indirect air-gap flux orientation, and a DC/DC converter is used for the DFIG system to DC grid connection. The maximum power point tracking and DC voltage droop control can also be implemented for the proposed DFIG system. Finally, a 4-terminal DFIG-based multi-terminal DC grid system is developed by Matlab to validate the availability of the proposed system and control strategy.

Methodology of Cyber Security Assessment in the Smart Grid

  • Woo, Pil Sung;Kim, Balho H.
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.495-501
    • /
    • 2017
  • The introduction of smart grid, which is an innovative application of digital processing and communications to the power grid, might lead to more and more cyber threats originated from IT systems. In other words, The Energy Management System (EMS) and other communication networks interact with the power system on a real time basis, so it is important to understand the interaction between two layers to protect the power system from potential cyber threats. This paper aims to identify and clarify the cyber security risks and their interaction with the power system in Smart Grid. In this study, the optimal power flow (OPF) and Power Flow Tracing are used to assess the interaction between the EMS and the power system. Through OPF and Power Flow Tracing based analysis, the physical and economic impacts from potential cyber threats are assessed, and thereby the quantitative risks are measured in a monetary unit.

Development of an PBS-based Information Provider of Cluster System for MDS (MDS를 위한 클러스터 시스템의 PBS 기반 정보 제공자 개발)

  • Cho Kwang-Moon
    • The Journal of the Korea Contents Association
    • /
    • v.5 no.2
    • /
    • pp.207-211
    • /
    • 2005
  • The pervasively proliferated computing environment in recent is a cluster system. This system is used in high performance computing area as a Grid system. However, the important information of cluster system in Grid environment does not provided to other systems. In this paper the scheme to provide these information is proposed. The proposed scheme provides the information of cluster system in the Grid environment. Based on this scheme the utilization possibilities of Grid information services are increased.

  • PDF

A Middleware Framework for an Automatic Deployment of a Grid Computing Environment (그리드 컴퓨팅 환경을 자동으로 구축하는 미들웨어 프레임워크)

  • Lee, Jin-Bock;Choi, Jae-Young
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.4
    • /
    • pp.255-259
    • /
    • 2009
  • In this paper, we present AGE(Automatic Grid Environments), which is a middleware system in which Grid resources can automatically participate in a Grid environment. While other existing systems need the configuration of each Grid node to deploy a Grid environment, AGE offers automatic installation and execution of necessary middleware for participating in a Grid environment. And Grid applications in AGE do not need to be pre-installed and pre-configured. When an application is to be executed in participating Grid nodes, this system can download, install, and execute the application automatically. Therefore, AGE provides users with convenience such as deploying a Grid environment, executing the application, and releasing nodes or resources from the Grid environment automatically.

The Study on 4MW Energy Storage System for Frequency Regulation (주파수 조정을 위한 4MW 전력 저장 시스템 연구)

  • Koh, Kwang-Soo;Lee, Chung-Woo;Kang, Byung-Kwan;Oh, Seung-Hun;Lee, Yun-Jae;Choi, Eun-Sik;Ryu, Kang-Yeul;Kim, Hee-Jung
    • Proceedings of the KIPE Conference
    • /
    • 2013.11a
    • /
    • pp.125-126
    • /
    • 2013
  • ESS(Energy Storage System) for Improve the quality of the power grid, supply reliability, system stability and the efficient operation method of power is drawing attention. According to changes in the load of the power system frequency will be adjustable in real time in response to changes in the frequency of the grid, so thermal power output is mainly controlled in order to keep the grid frequency stable. ESS for adjusting the frequency of the grid when the frequency rises to grid and charge the energy storage device. If the frequency drops to discharge the battery power to the grid and the future is expected to replace the thermal power plant. This paper describes 4MW ESS for the frequency regulation and find out about the characteristics through the PSCAD/EMTDC.

  • PDF

Evaluation of a Grid System for Numerical Analysis of a Small Savonius Wind Turbine (사보니우스 소형풍력터빈 수치해석용 격자시스템 평가)

  • KIM, CHUL-KYU;LEE, SANG-MOON;JEON, SEOK-YUN;YOON, JOON-YONG;JANG, CHOON-MAN
    • Journal of Hydrogen and New Energy
    • /
    • v.27 no.5
    • /
    • pp.547-553
    • /
    • 2016
  • This paper presents the effect of a grid system on the performance of a small Savonius wind turbine installed side-by-side. Turbine performance is compared using three different grid systems; tetrahedral grid having a concentrated circular grid around turbine rotors, the tetrahedral grid having a concentrated rectangular grid around turbine rotors and the symmetric grid having a concentrated tetrahedral grid near the turbine rotor blades and a hexahedral grid. The commercial code, SC/Tetra has been used to solve the three-dimensional unsteady Reynolds-averaged Navier-Stokes analysis in the present study. The Savonius turbine rotor has a rotational diameter of 0.226m and an aspect ratio of 1.0. The distance between neighboring rotor tips keeps the same length of the rotor diameter. The variations of pressure and power coefficient are compared with respect to blade rotational angles and rotating frequencies of the turbine blade. Throughout the comparisons of three grid systems, it is noted that the symmetric grid having a concentrated tetrahedral grid near the turbine rotor blades and a hexahedral grid has a stable performance compared to the other ones.