• Title/Summary/Keyword: Grid number

Search Result 947, Processing Time 0.249 seconds

A Basic Study of Thermal-Fluid Flow Analysis Using Grid Computing (그리드 컴퓨팅을 이용한 열유동 해석 기법에 관한 기초 연구)

  • Hong, Seung-Do;Ha, Yeong-Man;Cho, Kum-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.5
    • /
    • pp.604-611
    • /
    • 2004
  • Simulation of three-dimensional turbulent flow with LES and DNS lakes much time and expense with currently available computing resources and requires big computing resources especially for high Reynolds number. The emerging alternative to provide the required computing power and working environment is the Grid computing technology. We developed the CFD code which carries out the parallel computing under the Grid environment. We constructed the Grid environment by connecting different PC-cluster systems located at two different institutes of Pusan National University in Busan and KISTI in Daejeon. The specification of PC-cluster located at two different institutes is not uniform. We run our parallelized computer code under the Grid environment and compared its performance with that obtained using the homogeneous computing environment. When we run our code under the Grid environment, the communication time between different computer nodes takes much larger time than the real computation time. Thus the Grid computing requires the highly fast network speed.

Automated Body-Fitted Grid Generation Method with Application to Natural Convection Problem (자동화된 경계고정좌표 생성법과 자연대류 문제에 대한 적용)

  • Choi, IL Kon;Maeng, Joo Sung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.6
    • /
    • pp.703-712
    • /
    • 1999
  • This paper suggests an automatic elliptic grid generation method that is well-suited for the numerical mapping of complex geometries which are easily obtained from general CAD programs. An LBLADI solver is used for the governing mapping equations to have the strong diagonal dominance. The full boundary control method is adopted to determine the control functions of the equations, which allows the control of the grid regarding spacing and angle control at all boundary surfaces. The solution method presented here provides the capability of mapping very complicated geometries by defining grid point locations only along the boundaries. In the automated elliptic grid generation procedure, it is showed that strong diagonal dominance is essential to achieve successful mapping irrespective of the initial grid condition provided. To demonstrate the robustness of this method, it is applied to the thermal flow like the natural convection between eccentric cylinders. The results agree well with others.

Investigation of Instability in Multiple Grid-Connected Inverters with LCL Output Filters

  • Asghari, Fariba;Safavizadeh, Arash;Karshenas, Hamid Reza
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.757-765
    • /
    • 2018
  • This paper deals with the instability and resonant phenomena in distribution systems with multiple grid-connected inverters with an LCL output filter. The penetration of roof-top and other types of small photovoltaic (PV) grid-connected systems is rapidly increasing in distribution grids due to the attractive incentives set forth by different governments. When the number of such grid-connected inverters increases, their interaction with the distribution grid may cause undesirable effects such as instability and resonance. In this paper, a grid system with several grid-connected inverters is studied. Since proportional-resonant (PR) controllers are becoming more popular, it is assumed that most inverters use this type of controller. An LCL filter is also considered at the inverters output to make the case as realistic as possible. A complete modeling of this system is presented. Consequently, it is shown that such a system is prone to instability due to the interactions of the inverter controllers. A modification of PR controllers is presented where the output capacitor is virtually decreased. As a result, the instability is avoided. Simulation results are presented and show a good agreement with the theoretical studies. Experimental results obtained on a laboratory setup show the validity of the analysis.

Scalable Resource Sharing using Group Similarity Function in Grid System (그리드 시스템에서 그룹유사함수를 이용한 확장성 있는 자원공유)

  • Mateo, Romeo Mark A.;Lee, Jae-Wan;Lee, Mal-Rey
    • Journal of Internet Computing and Services
    • /
    • v.11 no.4
    • /
    • pp.73-83
    • /
    • 2010
  • The scalability of a grid system should be efficiently designed to handle the increasing number of grid users. This paper presents a scalable resource sharing mechanism among virtual organizations (VO) in grid environment by the scalable virtual organizations (SVO). The proposed grid architecture is composed of standard services of a grid system to manage the SVO. We propose a group similarity function which is used to determine similarities among VOs to select the VOs to merge. We compared other similarity functions to the GSF and determined the throughput performance of the SVO using simulation for grid system.

Volume Rendering using Grid Computing for Large-Scale Volume Data

  • Nishihashi, Kunihiko;Higaki, Toru;Okabe, Kenji;Raytchev, Bisser;Tamaki, Toru;Kaneda, Kazufumi
    • International Journal of CAD/CAM
    • /
    • v.9 no.1
    • /
    • pp.111-120
    • /
    • 2010
  • In this paper, we propose a volume rendering method using grid computing for large-scale volume data. Grid computing is attractive because medical institutions and research facilities often have a large number of idle computers. A large-scale volume data is divided into sub-volumes and the sub-volumes are rendered using grid computing. When using grid computing, different computers rarely have the same processor speeds. Thus the return order of results rarely matches the sending order. However order is vital when combining results to create a final image. Job-Scheduling is important in grid computing for volume rendering, so we use an obstacle-flag which changes priorities dynamically to manage sub-volume results. Obstacle-Flags manage visibility of each sub-volume when line of sight from the view point is obscured by other subvolumes. The proposed Dynamic Job-Scheduling based on visibility substantially increases efficiency. Our Dynamic Job-Scheduling method was implemented on our university's campus grid and we conducted comparative experiments, which showed that the proposed method provides significant improvements in efficiency for large-scale volume rendering.

NUMERICAL SIMULATION OF LID-DRIVEN FLOW IN A SQUARE CAVITY AT HIGH REYNOLDS NUMBERS (정사각 캐비티내 고레이놀즈수 Lid-Driven 유동의 수치해석)

  • Myong H. K.
    • Journal of computational fluids engineering
    • /
    • v.10 no.4 s.31
    • /
    • pp.18-23
    • /
    • 2005
  • Numerical simulations of two-dimensional steady incompressible lid-driven flow in a square cavity are presented by a new solution code(PowerCFD) which adopts an unstructured cell-centered method. Solutions are obtained for configurations with a Reynolds number as high as 10,000 with both rectangular and hybrid types of unstructured grid mesh in order to validate the code's independency of grid type. Interesting features of the flow are presented in detail and comparisons are made with benchmark solutions found in the literature. It is found that the code is capable of producing accurately the nature of the lid-driven cavity flow at high Reynolds numbers with no grid type dependency.

A Study on CFD Uncertainty Analysis and its Application to Ship Resistance Performance Using Open Source Libraries (CFD의 불확실성 해석에 대한 고찰 및 소스 공개 코드를 이용한 선박저항성능에의 적용)

  • Seo, Seonguk;Song, Seongjin;Park, Sunho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.4
    • /
    • pp.329-335
    • /
    • 2016
  • In the present paper, Computational fluid dynamics (CFD) uncertainty analysis proposed by ITTC was investigated and applied to ship resistance performance using open source libraries, called OpenFOAM. Uncertainties for grid size, time step and iteration number were studied. Wave patterns and hull wave profile were compared for various uncertainty parameters. From results, grid size uncertainty was mainly contributed to simulation numerical uncertainty.

Enhanced resource scheduling in Grid considering overload of different attributes

  • Hao, Yongsheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.3
    • /
    • pp.1071-1090
    • /
    • 2016
  • Most of scheduling methods in the Grid only consider one special attribute of the resource or one aspect of QoS (Quality of Service) of the job. In this paper, we focus on the problem that how to consider two aspects simultaneously. Based on the requirements of the jobs and the attributes of the resources, jobs are categorized into three kinds: CPU-overload, memory-overload, and bandwidth-overload jobs. One job may belong to different kinds according to different attributes. We schedule the jobs in different categories in different orders, and then propose a scheduling method-MTS (multiple attributes scheduling method) to schedule Grid resources. Based on the comparisons between our method, Min-min, ASJS (Adaptive Scoring Job Scheduling), and MRS (Multi-dimensional Scheduling) show: (1) MTS reduces the execution time more than 15% to other methods, (2) MTS improves the number of the finished jobs before the deadlines of the jobs, and (3) MTS enhances the file size of transmitted files (input files and output files) and improves the number of the instructions of the finished jobs.

A Machine Vision Algorithm for Measuring the Diameter of Eggcrate Grid (에그크레이트(Eggcrate) 격자(Grid)의 내접원 직경 측정을 위한 머신비편 알고리즘)

  • Kim, Chae-Soo;Park, Kwang-Soo;Kim, Woo-Sung;Hwang, Hark;Lee, Moon-Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.4
    • /
    • pp.85-96
    • /
    • 2000
  • An Eggcrate assembly is an important part to hold and support 16,000 tubes containing hot and contaminated water in the steam generator of nuclear power plant. As a great number of tubes should be inserted into the eggcrate assembly, the dimensions of each eggcrate grid are one of the critical factors to determine the availability of tube insertion. in this paper. we propose a machine vision algorithm for measuring the inner-circle diameter of each eggcrate grid whose shape is not exact quadrangular. The overall procedure of the algorithm is composed of camera calibration, eggcrate image preprocessing, grid height adjustment, and inner-circle diameter estimation. The algorithm is tested on real specimens and the results show that the algorithm works fairly well.

  • PDF

Unstructured Pressure Based Method for All Speed Flows (전 속도영역 유동을 위한 비정렬격자 압력기반해법)

  • Choi, Hyung-Il;Lee, Do-Hyung;Maeng, Joo-Sung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.11
    • /
    • pp.1521-1530
    • /
    • 2002
  • This article proposes a pressure based method for predicting flows at all speeds. The compressible SIMPLE algorithm is extended to unstructured grid framework. Convection terms are discretized using second-order scheme with deferred correction approach. Diffusion term discretization is based on structured grid analogy that can be easily adopted to hybrid unstructured grid solver. This method also uses node centered scheme with edge based data structure for memory and computing time efficiency of arbitrary grid types. Both incompressible and compressible benchmark problems are solved using the above methodology. The demonstration of this method is extended to slip flow problem that has low Reynolds number but compressibility effect. It is shown that the proposed method can improve efficiency in memory usage and computing time without losing any accuracy.