• Title/Summary/Keyword: Grid generation

Search Result 1,127, Processing Time 0.032 seconds

Automatic Multi-Block Grid Generation Technique Based on Delaunay Triangulation (Delaunay 삼각화 기법을 활용한 다중-블록 정렬 격자의 자동 생성 기법)

  • Kim Byoungsoo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.11a
    • /
    • pp.108-114
    • /
    • 1999
  • In this paper. a new automatic multi=block grid generation technique for general 2D regions is introduced. According to this simple and robust method, the domain of interest is first triangulated by using Delaunay triangulation of boundary points, and then geometric information of those triangles is used to obtain block topology. Once block boundaries are obtained. structured grid for each block is generated such that grid lines have $C^0-continuity$ across inter-block boundaries. In the final step of the present method, an elliptic grid generation method is applied to smoothen grid distribution for each block and also to re-locale the inter-block boundaries, and eventually to achieve a globally smooth multi-block structured grid system with $C^1-continuity$.

  • PDF

Operational Characteristic Analysis of DC Micro-grid with Detail Model of Distributed Generation (분산전원 상세모델을 적용한 DC Micro-grid의 동작특성 분석)

  • Lee, Ji-Heon;Kwon, Gi-Hyun;Han, Byung-Moon;Cha, Han-Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.11
    • /
    • pp.2175-2184
    • /
    • 2009
  • This paper describes operational analysis results of the DC micro-grid using detailed model of distributed generation. Detailed model of wind power generation, photo-voltaic generation, fuel-cell generation was implemented with the user-defined model of PSCAD/EMTDC software that is coded with C-language. The operation analysis was carried out using PSCAD/EMTDC software, in which the power circuit is implemented by built-in model and the controller is modelled by user-defined model that is also coded with C-language. Various simulation results confirm that the DC micro-grid can operate without any problem in both the interconnected mode and the islanded mode. The operation analysis result confirms that the DC micro-grid make it feasible to provide power to the load stably. And it can be utilize to develop the actual system design and building.

Grid Generation about Full Aircraft Configuration Using Interactive Grid Generator (상호 대화형 격자생성 환경을 이용한 항공기 전기체 격자계 생성)

  • Kim Y. S.;Kwon J. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.11a
    • /
    • pp.145-151
    • /
    • 1999
  • An Interactive grid generation program(KGRID) with graphical user interface(GUI) has been improved. KGRID works on the UNLX environment and GUI has been implemented with OSF/Motif and X Toolkit and the graphics language is Open GL for visualization of the 3D objects. It supports more convenient user environment to generate 2D and 3D multi-block structured grid systems. It provides various useful field grid generation methods, which are the algebraic methods, the elliptic partial differential equations method and the predictor-corrector method. It also supports 3D surface grid generation with NURBS(Non-Uniform Rational B-Spline) and various stretching functions to control grid points distribution on curves and surfaces. And some menus are added to perform flexible management, for the objects. We generated surface and field grid system about full aircraft configuration using KGRID. The performance and stability of the KGRID is verified through the generation of the grid system about a complex shape.

  • PDF

Unstructured Quadrilateral Surface Grid Generation and Cell Size Control

  • Kim, Byoung-Soo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.386-389
    • /
    • 2008
  • In this paper grid generation of unstructured quadrilateral surface grids is described. The current approach uses conventional Advancing Front Method which is used to generate unstructured triangular grids. Grid cell size control is done by using closeness-based global interpolation method controlled by pre-described control elements. Algorithm and procedure for quadrilateral grid generation using AFM method and cell size control method are described. Examples of quadrilateral grid generation are shown, and difficulties and problems related to the current approach are also discussed.

  • PDF

Unstructured Quadrilateral Surface Grid Generation and Cell Size Control

  • Kim, Byoung-Soo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.386-389
    • /
    • 2008
  • In this paper grid generation of unstructured quadrilateral surface grids is described. The current approach uses conventional Advancing Front Method which is used to generate unstructured triangular grids. Grid cell size control is done by using closeness-based global interpolation method controlled by pre-described control elements. Algorithm and procedure for quadrilateral grid generation using AFM method and cell size control method are described. Examples of quadrilateral grid generation are shown, and difficulties and problems related to the current approach are also discussed.

  • PDF

A STUDY ON THE NURBS GRID GENERATION AND GRID CONTROL (NURBS를 이용한 격자생성 및 제어기법)

  • Yoon, Yong-Hyun
    • Journal of computational fluids engineering
    • /
    • v.12 no.3
    • /
    • pp.20-28
    • /
    • 2007
  • A fast and robust method of grid generation to multiple functions has been developed for flow analysis in three dimensional space. It is based on the Non-Uniform Rational B-Spline(NURBS) of an approximation method. Many of NURBS intrinsic properties are introduced and much more easily understood. The grid generation method, details of numerical implementation. examples of application, and potential extensions of the current method are illustrated in this paper. The object of this study is to develop the surface grid generation and the grid cluster techniques capable of resolving complex flows with shock waves, expansion waves, shear layers. The knot insert method of Non-Uniform Rational B-Spline seems well worked. In addition, NURBS has been widely utilized to generate grids in the computational fluid dynamics community. Computational examples associated with practical configurations have shown the utilization of the algorithm.

A method Based on Boundary Deformation for Planar Grid Generation

  • Liu, Xinru;Liu, Duanfeng;Han, Xuli
    • International Journal of CAD/CAM
    • /
    • v.8 no.1
    • /
    • pp.63-67
    • /
    • 2009
  • This paper puts forward a method based on the boundary deformation for planar grid generation. Many methods start with the special properties of grid and switch to the solution of a direct optimization or a non-linear minimum cost flow. Though with high theoretical significance, it's hard to realize due to the extremely complicated computing process. This paper brings out the automatic generation of planar grid by studying the boundary deformational properties of planar grid, which leads to uniform grid and enjoys the simplicity of computation and realization.

Octree Generation and Clipping Algorithm using Section Curves for Three Dimensional Cartesian Grid Generation (삼차원 직교 격자 생성을 위한 단면 커브를 이용한 옥트리 생성과 셀 절단 알고리듬)

  • Kim, Dong-Hun;Shin, Ha-Yong;Park, Se-Youn;Yi, Il-Lang;Kwon, Jang-Hyuk;Kwon, Oh-Joon
    • Korean Journal of Computational Design and Engineering
    • /
    • v.13 no.6
    • /
    • pp.450-458
    • /
    • 2008
  • Recently, Cartesian grid approach has been popular to generate grid meshes for complex geometries in CFD (Computational Fluid Dynamics) because it is based on the non-body-fitted technique. This paper presents a method of an octree generation and boundary cell clipping using section curves for fast octree generation and elimination of redundant intersections between boundary cells and triangles from 3D triangular mesh. The proposed octree generation method uses 2D Scan-Converting line algorithm, and the clipping is done by parameterization of vertices from section curves. Experimental results provide octree generation time as well as Cut-cell clipping time of several models. The result shows that the proposed octree generation is fast and has linear relationship between grid generation time and the number of cut-cells.

A Study on Numerical Adaptive Grid Generation for Incompressible Flow (비압축성유동을 위한 수치적응 격자생성에 관한 연구)

  • 이주희;이상환;윤준용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2237-2248
    • /
    • 1995
  • In incompressible flow which has multi-length scale, it has a very important effect which dependent variables are used for adaptive grid generation. Among many length scales in incompressible flow, the dependent variables used for the adaptive grid generation should be able to represent the feature of the concerned system. In this paper, by using vorticity and stream function, in addition to velocity components, the smoother and more stable grid generation is possible and these four flow properties represent each scale. The adaptive grid generation for a lid-driven cavity flow with $N_{re}$ =3200 using four flow properties such as velocity components, vorticity, stream function is performed, and the usefulness of using vorticity and stream function as the indicator for adaptive grid generation is shown.

Grid Generation for Turbomachinery Cascades (터보기계 익렬을 위한 격자 형성)

  • Jeong, Hui-Taek;Baek, Je-Hyeon
    • 연구논문집
    • /
    • s.25
    • /
    • pp.67-76
    • /
    • 1995
  • A grid generation algorithm associated with turbomachinery cascade flow fields has been developed. The present grid generation system consists of four separate modules. The system input is made of the results of the preliminary design, i.e., flow-path, aerodynamic conditions along the spanwise direction, and the blade profile data. The grid generation method generates a series of two-dimensional grids in the blade-to-blade passage to build up the three-¬dimensional grid, The numerical algorithm adopts the combination of the algebraic and elliptic method to create the internal grids efficiently and quickly. The resultant grids generated from each module of the system are used as the preprocessor for the performance prediction of the turbomachinery blade using Naveir-Stokes method in addition to the blade surface modelling for CAD data. For purposes of illustration, the grid generation system is applied to several complex geometries inculding a turbine rotor with and without a tip flow grid. Application to the blade design of the LP compressor was demonstrated to be very reliable and practical in support of design activities. This customized system are coupled strongly with the design procedure and reduces the man-hours required to predict the aerodynamic performance of the turbomachinery cascades using the CFD technique.

  • PDF