• Title/Summary/Keyword: Grid faults

Search Result 97, Processing Time 0.022 seconds

An Improvement of Optical Fiber Composite Power Cable On-Line Monitoring System for Underground Distribution Network (지중 배전계통 적용을 위한 광복합 케이블 실시간 감시시스템 개선)

  • Cho, Jin-Tae;Kim, Ju-Yong;Lee, Hak-Ju;Park, Jung-Sung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.7
    • /
    • pp.77-83
    • /
    • 2012
  • Since power system is switching to smart grid, on-line monitoring technology has become necessary for underground distribution power cable. Therefore, the application of DTS(Distributed Temperature Sensing) technology using OFCPC(Optical Fiber Composite Power Cable) capable of monitoring underground distribution power cables has been developed. These can bring about reductions in faults and increases in operating capacity of underground distribution system. To date, the test-bed of optical fiber composite power cable on-line monitoring system has been constructed. Then, matters to be improved have been drawn through verification experiments. This paper presents the improvement and experiment results of the optical fiber composite power cable on-line monitoring system to apply to underground distribution lines in the field.

A Simulator for Potential Distribution Analysis

  • Kil, Gyung-Suk;Gil, Hyong-Jun;Park, Dae-Won
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.225-229
    • /
    • 2012
  • This paper proposes a reduced-scale simulator that can replace numerical analytic methods for the estimation of potential distribution caused by ground faults in various grounding systems. The simulator consists of a hemispherical electrolytic tank, a three-dimensional potential probe, a grounding electrode, and a data acquisition module. The potential distribution is measured using a potentiometer with a position-tracing function when a test current flows to the grounding electrode. Using the simulator, we could clearly analyze the potential distribution for a reduced- scale model by one-eightieth of the buried depth and length of the grounding rod and grounding grid. Once both the shape of the grounding electrode and the fault current are known, the actual potential distribution can be estimated.

Development of the Triple Modular Redundant Excitation System with Simulator for 500MW Synchronous Generator (500MW 동기발전기용 시뮬레이터 탑재형 디지털 삼중화 여자시스템 개발)

  • Ryu, Hoseon;Cha, Hanju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.1
    • /
    • pp.70-75
    • /
    • 2014
  • TMR(triple modular redundant) digital excitation system with simulator is developed for tuning optimal control parameters during commissioning test and coping with system faults rapidly. A new system which mocks up virtual generator, turbine, grid can simulate as if excitation system is connected to a real generator system by setting four switches. The maintenance crew using the simulator is able to test perfectly the phase controller rectifiers, field breaker, sequence relays as well as TMR controller of the excitation system. Commissioning and performance results about the excitation system with simulator is discussed. The trial product was installed and operated at a 500MW thermal power plant after the commissioning test.

Identification of the faulted Feeder it Distribution Networks with Distributed Generations (분산전원이 연계된 배전 계통의 고장 선로 구분)

  • Kim S. G.;Kim K. H.;Jang S. I.;Kang Y. C.
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.257-259
    • /
    • 2004
  • This paper proposes the identification method for the faulted feeder, where it identify whether the faulted feeder is the DG-connected feeder or the neighboring feeder (but sharing the same bus of the substation). In general, DG has to be disconnected from the grid when the fault occurs on the interconnected distribution feeder as soon as possible. However, the faults occured on the neghboring feeder would mistakenly cause the disconnection of the DG. For reliable operation of DG, DG should be sustained at the fault occurred on neighboring distribution feeders. The proposed identification method utilizes the impedance monitored from the DG and examines the coordination of overcurrent relay of the distribution system. This paper describes how the proposed method to identify the faulted feeder and how the method can be utilized.

  • PDF

Lineament analysis in the euiseong area using automatic lineament extraction algorithm (자동 선구조 추출 알고리즘을 이용한 경북 의성지역의 선구조 분석)

  • 김상완
    • Economic and Environmental Geology
    • /
    • v.32 no.1
    • /
    • pp.19-31
    • /
    • 1999
  • In this study, we have estimated lineaments in the Euiseong area, Kyungbuk Province, from Landsat TM by applying the algorithm developed by Kim and Won et al. which can effectively reduce the look direction bias associated with the Sun's azimuth angle. Fratures over the study area were also mapped in the field at 57 selected sites to compare them with the results from the satellite image. The trends of lineaments estimated from the Landsat TM images are characterized as $N50^{\circ}$~70W, NS~$N10^{\circ}$W, and $N10^{\circ}$~$60^{\circ}$E trends. The spatial distribution of lineaments is also studied using a circular grid, and the results show that the area can be divided into two domains : domain A in which NS~$N20^{\circ}$E direction is dominant, and domain B in which west-north-west direction is prominent. The trends of lineaments can also be classified into seven groups. Among them, only C, D and G trends are found to be dominant based upon Donnelly's nearest neighbor analysis and correlations of lineament desities. In the color composite image produced by overlaying the lineament density map of these C-, D-, and G-trends, G-trend is shown to be developed in the whole study area while the eastern part of the area is dominated by D-trend. C-trend develops extensively over the whole are except the southeastern part. The orientation of fractures measured at 35 points in the field shows major trends of NS~$N30^{\circ}$E, $N50^{\circ}$~$80^{\circ}$W, and N80$^{\circ}$E~EW, which agree relatively well with the lineaments estimated form the satellite image. The rose diagram analysis fo field data shows that WNW-ESE trending discontinuities are developed in the whole area while discontinuities of NS~$N20^{\circ}$E are develped only in the estern part, which also coincide with the result from the satellite image. The combined results of lineaments from the satellite image and fracture orientation of field data at 22 points including 18 minor faults in Sindong Group imply that the WNW-ESE trend is so prominent that Gumchun and Gaum faults are possibly extended up to the lower Sindong Group in the study area.

  • PDF

Fracture Developing History and Density Analysis based on Grid-mapping in Bonggil-ri, Gyeongju, SE Korea (경주시 봉길리 지역의 단열발달사 및 단열밀도 해석)

  • Jin, Kwang-Min;Kim, Young-Seog
    • The Journal of Engineering Geology
    • /
    • v.17 no.3
    • /
    • pp.455-469
    • /
    • 2007
  • The study area, Bonggil-ri, Gyeongju, SE Korea, is composed of Cretaceous sedimentary rocks, and Tertiary igneous rocks and dykes. A research on fracture developing history and density distribution was carried out on well exposed Tertiary granites. The fractures developed in this area have the following sequence; NW-SE trending duo-tile shear bands (set a), NNW-SSE trending extensional fractures (set d), WNW-ESE trending extensional or normal fractures (set b), NE-SW trending right-lateral fractures (set c), WNW-ESE trending reverse fault reactivated from normal faults (set e) and NW-SE trending left-lateral faults reactivated from shear bands (set a) under brittle condition. According to the result of fracture density analysis, the fracture density in this area depends on rock property rather than rock age, and also higher fracture density is observed around fault damage zones. However, this high fracture density may also be related to the cooling process associated with dyke intrusion as well as rock types and fault movement. Regardless of the reason of the high fracture density, high fracture density itself contributes to fluid flow and migration of chemical elements.

Condition Assessment for Wind Turbines with Doubly Fed Induction Generators Based on SCADA Data

  • Sun, Peng;Li, Jian;Wang, Caisheng;Yan, Yonglong
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.689-700
    • /
    • 2017
  • This paper presents an effective approach for wind turbine (WT) condition assessment based on the data collected from wind farm supervisory control and data acquisition (SCADA) system. Three types of assessment indices are determined based on the monitoring parameters obtained from the SCADA system. Neural Networks (NNs) are used to establish prediction models for the assessment indices that are dependent on environmental conditions such as ambient temperature and wind speed. An abnormal level index (ALI) is defined to quantify the abnormal level of the proposed indices. Prediction errors of the prediction models follow a normal distribution. Thus, the ALIs can be calculated based on the probability density function of normal distribution. For other assessment indices, the ALIs are calculated by the nonparametric estimation based cumulative probability density function. A Back-Propagation NN (BPNN) algorithm is used for the overall WT condition assessment. The inputs to the BPNN are the ALIs of the proposed indices. The network structure and the number of nodes in the hidden layer are carefully chosen when the BPNN model is being trained. The condition assessment method has been used for real 1.5 MW WTs with doubly fed induction generators. Results show that the proposed assessment method could effectively predict the change of operating conditions prior to fault occurrences and provide early alarming of the developing faults of WTs.

An Overcurrent Analysis in Neutral Line and Algorithm to Prevent Malfunction of Relay in Distributed Generations (분산전원 연계선로에서 지락고장시 중성선의 과전류 해석 및 보호계전기의 새로운 알고리즘)

  • Shin, Dong-Yeol;Kim, Dong-Myung;Cha, Han-Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.1916-1922
    • /
    • 2009
  • Introducing distributed generators(DGs) to utility distribution system can cause malfunction of relay on the grid when ground faults or severe load unbalances are occurred on the system. Because DGs interconnected to the grid can contribute fault currents and make bidirectional power flows on the system, fault currents from DGs can cause an interference of relay operation. A directional over current relay(DOCR) can determine the direction of power flow whether a fault occurs at the source side or load side through detecting the phases of voltage and current simultaneously. However, it is identified in this paper that the contributed fault current(Ifdg) from the ground source when was occurred to contribute single-line-to-ground(SLG) fault current, has various phases according to the distances from the ground source. It means that the directionality of Ifdg may not be determined by simply detecting the phases of voltage and current in some fault conditions. The magnitude of Ifdg can be estimated approximately as high as 3 times of a phase current and its maximum is up to 2,000 A depending on the capacity of generation facilities. In order to prevent malfunction of relay and damage of DG facilities from the contribution of ground fault currents, Ifdg should be limited within a proper range. Installation of neutral ground reactor (NGR) at a primary neutral of interconnection transformer was suggested in the paper. Capacity of the proposed NGR can be adjusted easily by controlling taps of the NGR. An algorithm for unidirectional relay was also proposed to prevent the malfunction of relay due to the fault current, Ifdg. By the algorithm, it is possible to determine the directionality of fault from measuring only the magnitude of fault current. It also implies that the directionality of fault can be detected by unidirectional relay without replacement of relay with the bidirectional relay.

3-D Crustal Velocity Tomography in the Southern Part of The Korean Peninsula (한반도 남부지역의 3-D 속도 토모그래피)

  • Kim, So Gu;Li, Qinghe
    • Economic and Environmental Geology
    • /
    • v.31 no.2
    • /
    • pp.127-139
    • /
    • 1998
  • A new technique of simultaneous inversion for 3-D seismic velocity structure by using direct, reflected, and refracted waves is applied to the southeast part of the Korean Peninsula including Pohang Basin, Kyongsang Basin and Ryongnam Massif. Pg, Sg, PmP, SmS, Pn, and Sn arrival times of 44 events with 554 seismic rays are inverted for locations and crustal structure. $6{\times}6$ with $0.5^{\circ}$ and 8 layers (4 km each layer) model was inverted. 3-D seismic crustal velocity tomography including eight sections from surface to Moho, ten profiles along latitude and longitude are analyzed. The results are as follows: 1) the average velocity and thickness of sediment are 5.04 km/s and 3-4 km, and the velocity of basement is 6.11 km/s. The shape of velocity in shallower layer is agreement with Bouguer gravity anomaly (Cho et al., 1997). 2) the velocities fluctuate strongly in the upper crust. The velocity distribution of the lower crust under Conrad appears basically horizontal. 3) the average depth of Moho is 30.4 km, and velocity is 8.01 km/s. 4) from the velocity and depth of the sediment, the thickness, velocity and form of the upper crust, and the depth and form of Moho, we can find the obvious differences among Ryongnam Massif, Kyongsang Basin and Pohang Basin. 5) the deep faults (a Ulsan series faults) near Kyongju and Pohang areas can be found to be normal and/or thrust faults with detachment extended to the bottom of the upper crust.

  • PDF

Study on Stability Analysis for Systematic Impact Assessment at the Cooperation of Land in Offshore Wind Power Generation Demonstration Complex (해상풍력 실증 단지 육지 연계시 계통 영향 평가를 위한 안정도 해석에 관한 연구)

  • Park, Sang-ho;Kim, Kern-Joong;Han, Sangwook
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.4
    • /
    • pp.151-157
    • /
    • 2017
  • In this paper, it is the result of analysis of the stability by power system analysis about the influence on the power system when the southwest - offshore wind power demonstration complex is constructed to 60MW and it is linked with the onshore power system. Considering the position of the wind turbine actually installed and the length of the cooperating line, we modeled the wind generators, offshore substation and the turbine step-up transformer. Changes of voltage when internal and external faults occurred is analyzed and the reactive power demand according to the amount of electricity generation is derived. And also phase angle stability and frequency is observed through a transient analysis. This paper clarify that there is no problem in the system when only offshore wind power is linked with the grid and try to present the reactive power amount necessary for maintaining the voltage of the point of cooperation appropriately.