Browse > Article

Fracture Developing History and Density Analysis based on Grid-mapping in Bonggil-ri, Gyeongju, SE Korea  

Jin, Kwang-Min (Dept. of Environmental Geosciences, Pukyong National University)
Kim, Young-Seog (Dept. of Environmental Geosciences, Pukyong National University)
Publication Information
The Journal of Engineering Geology / v.17, no.3, 2007 , pp. 455-469 More about this Journal
Abstract
The study area, Bonggil-ri, Gyeongju, SE Korea, is composed of Cretaceous sedimentary rocks, and Tertiary igneous rocks and dykes. A research on fracture developing history and density distribution was carried out on well exposed Tertiary granites. The fractures developed in this area have the following sequence; NW-SE trending duo-tile shear bands (set a), NNW-SSE trending extensional fractures (set d), WNW-ESE trending extensional or normal fractures (set b), NE-SW trending right-lateral fractures (set c), WNW-ESE trending reverse fault reactivated from normal faults (set e) and NW-SE trending left-lateral faults reactivated from shear bands (set a) under brittle condition. According to the result of fracture density analysis, the fracture density in this area depends on rock property rather than rock age, and also higher fracture density is observed around fault damage zones. However, this high fracture density may also be related to the cooling process associated with dyke intrusion as well as rock types and fault movement. Regardless of the reason of the high fracture density, high fracture density itself contributes to fluid flow and migration of chemical elements.
Keywords
fault; fracture; fracture density analysis; fracture developing history; grid-mapping; fluid flow;
Citations & Related Records
연도 인용수 순위
  • Reference
1 한국자원연구원, 1998, 활성단층 조사평가 연구: 한반도 동남부 지역, 301
2 Antonellini, M., Aydin, A., 1994, Effect of faulting on fluid flow in porous sandstones: Petrophysical properties, American Association of Petroleum Geologists Bulletin, 78, 355-377
3 Cartwright, J. A., Lonergan, L., 1996, Volumetric contraction during compaction of mudrocks: a mechanism for the development of regional-scale polygonal fault systems, Basin Research, 8, 183-193   DOI   ScienceOn
4 Fisher, Q. J., Knipe, R. J., 1998, Fault sealing processes in siliciclastic sediments. In: Jones, G., Fisher, Q. J., Knipe, R. J. (Eds.), Faulting, fault sealing and fluid flow in hydrocarbon reservoirs, 147, Geological Society Special Publication, 117-134
5 Forster, C.B., Goddard, J.V., Evans, J.P., 1994, Permeability structure of a thrust fault, in The mechanical involvement of fluids in faulting, U.S. Geological Survey Open-File Report 94-228, 216-223
6 Guilbert, J. M., Park, C. F., 1985, The Geology of Ore Deposits, W.H. Freeman, New York
7 Kim, J. H., 1996, Mesozoic tectonics in Korea, Journal of Southeast Asian Earth Sciences, 13, 251-265   DOI   ScienceOn
8 Kim, Y. -S., Peacock, D. C. P., Sanderson, D. J., 2004a, Fault damage zones, Journal of Structural Geology, 26, 503-517   DOI   ScienceOn
9 Leckenby, R. J., Sanderson, D. J., Lonergan, L., 2005, Estimating flow heterogeneity in natural fracture systems, Journal of Volcanology and Geothermal Research, 148, 116-129   DOI   ScienceOn
10 Martel, S. J., Boger, W. A., 1998, Geometry and mechanics of secondary fracturing around small three-dimensional faults in granitic rock, Journal of Geophysical Research, 103, 21299-21314   DOI
11 Micarelli, L., Morettia, L., Jauberta, M., Moulouela, H., 2006b, Fracture analysis in the south-western Corinth rift (Greece) and implications on fault hydraulic behavior, Tectonophysics, 426, 31-59   DOI   ScienceOn
12 Nelson, E. P., Kullman, A. J., Gardner, M. H., 1999, Fault-fracture networks and related fluid flow and sealing, Brushy Canyon formation, west Texas, in Faults and Subsurface Fluid Flow in the Shallow Crust (Haneberg, W., Mozley, P. S., Moore, J. C., Goodwin, L. B. eds.), AGU Geophysical Monograph Series, 113, 69-81
13 Sanderson, D. J., Zhang, X., 1999, Critical stress localization of flow associated with deformation of wellfractured rock masses, with implications for mineral deposits, In: McCaffrey, K.J.W., Lonegan, L., Wilkinson, J.J. (Eds.), Fracture, Fluid Flow and Mineralisation, Special Publication, 155. Geological Society of London, 69-81
14 Smith, L., Forster, C.B., Evans, J.P., 1990, Interaction of fault zones, fluid flow, and heat transfer at the basin scale, inHydrogeology of permeability environments, International Association of Hydrogeologists, 2, 41-67
15 Yoon, S. H., Chough, S. K., 1995, Regional strike slip in the eastern continental margin of Korea and its tectonic implications for the evolution of Ulleung Basin, East Sea (Sea of Japan), Geological Society of America Bulletin, 107, 83-97   DOI   ScienceOn
16 Zhang, X., Sanderson, D. J., 1996a, Effects of stress on the two-dimensional permeability tensor of natural fracture networks, Geophysical Journal International, 125, 912-924   DOI   ScienceOn
17 Wibberley, C. A. J., 2002, Hydraulic diffusivity of fault gouge zones and implications for thermal pressurization during seismic slip, Earth, Planets and Space, 54, 1153-1171   DOI
18 Caine, J.S., Forster, C.B., Evans, J.P., 1993, A classification scheme for permeability structures in fault zones, Eos (Transactions, American Geophysical Union), 74, 677
19 Newman, J., Mitra, G., 1994, Fluid-influenced deformation and recrystallization of dolomite at low temperatures along a natural fault zone, Mountain City window, Tennessee, Geological Society of America Bullentin, 106, 1267-1280   DOI   ScienceOn
20 Tamaki, K., 1988, Geological structure of the Japan Sea and its tectonic implications, Bulletin of the Geological Survey of Japan, 39, 269-365
21 Sibson, R. H., 1989, Earthquake faulting as a structural process, Journal of Structural Geology, 11, 1-14   DOI   ScienceOn
22 Choi, J. H., Murray, A. S., Jain, M., Cheon, G. C. S., Chang, H. W., 2003, Luminescence dating of well-sorted marine terrace sediments on the southeastern coast of Korea, Quaternary Science Reviews, 22, 407-421   DOI   ScienceOn
23 Li, Y. G., Aki, K., Vidale, J. E., Alvarez, M. G., 1988, A delineation of the Nojima fault ruptured in the M7.2 Kobe, Japan, earthquake of 1995 using fault zone trapped waves, Journal of Geophysical Research, 103, 7247-7263   DOI
24 김동학, 황재하, 박기화, 송교영, 1998, 부산지질도폭설명서 (1:250,000), 한국자원연구원
25 Matthai, S. K., Aydin, A., Pollard, D. D., Roberts, S. G., 1998, Numerical simulation of departures from radial drawdown in a faulted sandstone reservoir with joints and deformation bands, In: Jones, G., Fisher, Q. J., Knipe, R. J. (Eds.), Faulting, fault sealing and fluid flow in hydrocarbon reservoirs, Geological Society Special Publication, 157-191
26 Jourde, H., Cornaton, F., Pistre, S., Bidaux, P., 2002, Flow behavior in a dual fracture network, Journal of Hydrology, 266, 99-119   DOI   ScienceOn
27 Cowie, P. A., Shipton, Z. K., 1998, Fault tip displacement gradients and process zone dimensions, Journal of Structural Geology, 20, 983-997   DOI   ScienceOn
28 Dholakia, S. K., Aydin, A., Pollard, D. D., Zoback, M. D., 1998, Fault-controlled hydrocarbon pathways in the Monterey formation, California, Bulletin of the American Association of Petroleum Geologists, 82, 1551-1574
29 Ree, J. -H., Lee, Y. -J., Rhodes, E. J., Park, Y., Kwon, S. -T., Chwae, U., Jeon, J. -S., Lee, B., 2003, Quaternary reactivation of Tertiary faults in the southeastern Korean Peninsula: age constraint by optically stimulated luminescence dating, The Island Arc, 12, 1- 12   DOI   ScienceOn
30 Forster, C. B., Evans, J. P., 1991, Fluid flow in thrust faults and crystalline thrust sheets: Results of combined field and modeling studies, Geophysical Research Letters, 18, 979-982   DOI
31 Kim, Y. -S., Peacock D. C. P., Sanderson D. J., 2003, Mesoscale strike-slip faults and damage zones at Marsalforn, Gozo Island, Malta, Journal of Structural Geology, 25, 793-812   DOI   ScienceOn
32 Caine, J. S., Forster, C. B., 1997, Architecture and permeability strucuture of the Stillwater normal fault, Dixie Valley, Nevada (abstract), Ann. Meeting Geol. Soc. Am., Salt Lake City, Utah, 29, A-226
33 Chough, S. K., Barg, E., 1987, Tectonic history of Ulleung basin margin, East Sea (Sea of Japan), Geology, 15, 45-48   DOI
34 Lee, J. I., 2000, Provenance and thermal maturity of the lower Cretaceous Gyeongsang Supergroup, Korea, Unpublished Ph.D thesis, Seoul National University, 129
35 Gudmunsson, A., 2001, Fluid overpressure and flow in fault zone: field measurements and models, Tectonophysics, 336, 183-197   DOI   ScienceOn
36 이현구, 문희수, 민경덕, 김인수, 윤혜수, Itaya, T., 1992, 포항 및 장기분지에 대한 고지자기, 층서 및 구조연구: 화산암류의 K-Ar 연대, 광산지질, 25, 337- 349
37 Caine, J. S., Forster, C. B., 1999, Fault zone architecture and fluid flow: insights from field data and numerical modeling, in Faults and Subsurface Fluid Flow in the Shallow Crust (Haneberg, W., Mozley, P. S., Moore, J. C., Goodwin, L. B. eds.), AGU Geophysical Monograph Series, 113, 101-127
38 Dunne, W. M., Hancock, P. L., 1994, Paleostress Analysis of Small-Scale Brittle Structures. In Hancock, P.L. (Ed.), Continental Deformation. Pergarmon press, 101-120
39 Goddard, J.V., Evans, J.P., 1995, Chemical changes and fluid-rock interaction in faults of crystalline thrust sheets, northwestern Wyoming, U.S.A, Journal of Structural Geology, 17, 533-547   DOI   ScienceOn
40 Inoue, D., Sasaki, T., Yanagida, M., Choi, W. H., Chang, C. J., 2002, Stratigraphy of the marine terrace along the East coast in Korea by means of the loess-paleosol sequence and Japanese tephra, The 55th Annual Meeting of the Geological Society of Korea, Abstr., 81
41 Sibson, R. H., Robert, F., Poulsen, K. H., 1988, High-angle reverse faults, fluid pressure cycling, and mesothermal quartz-gold deposits, Geology, 16, 551- 555   DOI
42 Scholz, C.H., 1990, The mechanics of earthquakes and faulting, Cambridge, Cambridge University Press, 439
43 Hancock, P. L, 1985, Brittle microtectonics: principles and practice, Journal of Structural Geology, 7, 437- 458   DOI   ScienceOn
44 Randolph, L., Johnson, B., 1989, Influence of faults of moderate displacement on groundwater flow in the Hickory sandstone sandstone aquifer in central Texas, Geological Society of America Abstracts with Programs, 21, 242
45 Peacock, D. C. P., Sanderson, D. J., 1991, Displacements, segment linkage and relay ramps in normal fault zones, Journal of Structural Geology, 13, 721- 733   DOI   ScienceOn
46 Caine, J. S., Evans, J. P., Forster, C. B., 1996, Fault zone architecture and permeability structure, Geology, 24, 1025-1028   DOI   ScienceOn
47 이봉주, 류충렬, 최위찬, 1999, 경주시 양남면 일대의 제 4기 단층, 지질학회지, 35, 1-14
48 Lopez, D. L., Smith, L., 1995, Fluid flow in fault zones: Analysis of the interplay of convective circulation and topographically driven groundwater flow, Water Resources Research, 31, 1489-1503   DOI   ScienceOn
49 Sigda, J. M., Goodwin, L. B., Mozley, P. S., Wilson, J. L., 1999, Permeability Alteration in Small-Displacement Faults in Poorly Lithified Sediments: Rio Grande Rift, Central New Mexico, in Faults and Subsurface Fluid Flow in the Shallow Crust (Haneberg, W., Mozley, P. S., Moore, J. C., Goodwin, L. B. eds.), AGU Geophysical Monograph Series, 113, 51-68
50 박양대, 윤형대, 1968, 한국지질도(1:50,000), 울산도폭, 국립지질조사소, 5
51 Ferrill, D. A., Winterle, J., Wittmeyer, G., Sims, D., Colton, S., Armstrong, A., Morris, A. P., 1999, Stressed Rock Strains Groundwater at Yucca Mountain, Nevada, The Geological Society of America Today, 9
52 Zhang, X., Sanderson, D. J., 1998, Numerical study of critical behavior of deformation and permeability of fractured rock masses, Marine and Petroleum Geology, 15, 535-548   DOI   ScienceOn
53 Micarelli, L., Benedicto, A., Wibberley, C. A. J., 2006a, Structural evolution and permeability of normal fault zones in highly porous carbonate rocks, Journal of Structural Geology, 28, 1214-1227   DOI   ScienceOn
54 최범영, 류충렬, 권석기, 최위찬, 황재하, 이승렬, 이병주, 2002, 포항-울산 지역의 단층 구조 분석: 활구조 운동에 대한 접근, 대한지질학회지, 38, 33-50
55 KOPEC, 2002, Preliminary Site Assessment Report for the New Site of Wolsung Power Plant (unpublished report), 2.5.-1-2.5.-281
56 Zhang, X., Sanderson, D. J., 1995, Anisotropic features of geometry and permeability in fractured rock masses. Engineering Geology, 40, 65-75   DOI   ScienceOn
57 손문, 정혜윤, 김인수, 2002. 한반도 남동부 연일구조선 남부 일원의 지질과 지질구조, 지질학회지, 38, 175- 197
58 Kim, Y. -S., Park, J. Y., 2006, Cenozoic deformation history and its tectonic significance around Yangnam- Yangbuk area, SE Korea, Journal of Asian Earth Sciences, 26, 1-20   DOI   ScienceOn
59 Tateiwa, I., 1924, Geological Atlas of Chosen, No. 2. Ennichi, Kyuryuho and Choyo sheets, Geological Survey, Governmental General of Chosen, 6
60 Kim, Y. -S., Park, J. Y., Kim, J. H., Shin, H. C., Sanderson, D. J., 2004b, Thrust geometries in unconsolidated Quaternary sediments and evolution of the Eupchon Fault, SE Korea, The Island Arc, 13, 403- 415   DOI   ScienceOn
61 Zhang, X., Sanderson, D. J., 1996b, Numerical modelling of the effects of fault slip on fluid flow around extensional faults, Journal of Structural Geology, 18, 109- 119   DOI
62 Kimura, G., Tamaki, K., 1986, Collision, rotation, and back-arc spreading in the region of the Okhotsk and Japan Seas, Tectonics, 5, 389-401   DOI
63 Kaneoka, I., Takigami, Y., Takaoka, N., Yamashita, S., Tamaki, K., 1992, $^{40}Ar-^{39}Ar$ analysis of volcanic rocks recovered from the Japan Sea floor: Constraints on the age of formation of the Japan Sea, Proceedings, Ocean Drilling Program, Scientific Results 127/128, 819-836
64 Barton, C. A., Zoback, M. D., Moos, D., 1995, Fluid flow along potentially active faults in crystalline rock, Geology, 23, 683-686   DOI   ScienceOn
65 Bear, J., Tsang, C. -F., de Marsily, G., 1993, Flow and contaminant transport in fractured rock, Academic Press, San Diego, 560
66 Haneberg, W. C., 1995, Steady-state groundwater flow across idealized faults, Water Resources Research, 31, 1815-1820   DOI   ScienceOn
67 정창식, 2002, 해안단구에 대한 연대측정, 대한지질학회지, 38, 279-291