• Title/Summary/Keyword: Grid data

Search Result 2,322, Processing Time 0.025 seconds

Development of Realtime GRID Analysis Method based on the High Precision Streaming Data

  • Lee, HyeonSoo;Suh, YongCheol
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.6
    • /
    • pp.569-578
    • /
    • 2016
  • With the recent advancement of surveying and technology, the spatial data acquisition rates and precision have been improved continually. As the updates of spatial data are rapid, and the size of data increases in line with the advancing technology, the LOD (Level of Detail) algorithm has been adopted to process data expressions in real time in a streaming format with spatial data divided precisely into separate steps. The existing GRID analysis utilizes the single DEM, as it is, in examining and analyzing all data outside the analysis area as well, which results in extending the analysis time in proportion to the quantity of data. Hence, this study suggests a method to reduce analysis time and data throughput by acquiring and analyzing DEM data necessary for GRID analysis in real time based on the area of analysis and the level of precision, specifically for streaming DEM data, which is utilized mostly for 3D geographic information service.

Hexagonal Grid Shadow Generation using Bézier Curves (베지어 곡선을 활용한 육각 그리드의 그림자 생성 방법)

  • Minseok Kim;Taekgwan Nam;Youngjin Park
    • Smart Media Journal
    • /
    • v.12 no.4
    • /
    • pp.47-57
    • /
    • 2023
  • The hexagonal grid structure has been studied for processing and representing spatial information data in Geographic Information Systems. Visualization using a hexagonal grid has high visibility compared to other grid representation methods. However, it is difficult to effectively convey quantitative data and differences between grids depending on the geospatial data represented. In this paper, we propose a method to visually emphasize the hexagonal grid by generating shadow on the outside of the hexagonal grid. To do so, we offset the outer line segments of the hexagonal grid to be emphasized and generate a Bézier curve based on that information to determine the final shadow shape. We also apply variable transparency toward the edges of the shadow because the shadow gradually fades away from the hexagonal grid. We have shown that the proposed method can effectively generate shadow areas given not only a single hexagonal grid but also multiple hexagonal grids and can generate various shadow shapes based on user interface inputs. We apply the proposed method to Yongsan-gu, one of the districts of Seoul, and show the results of visually emphasizing it after generating shadow using the proposed method.

Analyzing Smart Grid Energy Data using Hadoop Based Big Data System (하둡기반 빅데이터 시스템을 이용한 스마트그리드 전력데이터 분석)

  • Cho, YoungTak;Lee, WonJin;Lee, Ingyu;On, Byung-Won;Choi, Jung-In
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.2
    • /
    • pp.85-91
    • /
    • 2015
  • With the increasing popularity of Smart Grid infrastructure, it is much easier to collect energy usage data using AMI (Advanced Measuring Instrument) from residential housing, buildings and factories. Several researches have been done to improve an energy efficiency by analyzing the collected energy usage data. However, it is not easy to store and analyze the energy data using a traditional relational database management system since the data size grows exponentially with an increasing popularity of Smart grid infrastructure. In this paper, we are proposing a Hadoop based Big data system to store and analyze energy usage data. Based on our limited experiments, Hadoop based energy data analysis is three times faster than that of a relational database management system based approach with the current system.

A Data Dissemination Mechanism for Grid Environments (그리드 환경을 위한 데이터 분산 전송 기법)

  • Kim Hyung-Jinn;Lee Jong-Suk Ruth
    • Journal of Internet Computing and Services
    • /
    • v.7 no.6
    • /
    • pp.63-77
    • /
    • 2006
  • Nowadays as many Grid communities appear, the requirement of singlepoint-to-multipoint data transfer in Grid environment is growing. In a typical LAN or a special purpose network environment, a multicasting technology was used in such a data dissemination transfer case. However, compared with unicasting fouler performance transfer performance the multicating transfer is worse, and the obligation of a special hardware setting makes it difficult to implement in common Grid environment. Therefore, in this paper we propose on effective data dissemination mechanism for Grid environment named DDMG(Data Dissemination Mechanism for Grid), DDMG uses P2P(Peer-to-Peer) mechanism and Globus XIO library to improve the performance in a data dissemination process and to support heterogeneous protocols in Grid environment. We also evaluate the performance of DDMG mechanism in LAN and WAN environment by comparing with unicast transfer.

  • PDF

A Research on Development of Bills of Material Using Web Grid for Product Lifecycle Management

  • Yoo, Ji-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.12
    • /
    • pp.131-136
    • /
    • 2017
  • PLM(Product Lifecycle Management) is an information management system that can integrate data, processes, business systems and human resources throughout the enterprise. BOM(Bills Of Material) is key data for designing, purchasing materials, manufacturing planning and management, which is basic for product development throughout the product life cycle. In this paper, we propose the efficient system to increase the data loading speed and the processing speed when using such large BOM data. We present the performance and usability of IMDG (In Memory Data Grid) for data processing when loading large amounts of data. In the UI, using the pure web grid of JavaScript instead of the existing data loading method can be improve performance of data managing.

Dynamic Replication Based on Availability and Popularity in the Presence of Failures

  • Meroufel, Bakhta;Belalem, Ghalem
    • Journal of Information Processing Systems
    • /
    • v.8 no.2
    • /
    • pp.263-278
    • /
    • 2012
  • The data grid provides geographically distributed resources for large-scale applications. It generates a large set of data. The replication of this data in several sites of the grid is an effective solution for achieving good performance. In this paper we propose an approach of dynamic replication in a hierarchical grid that takes into account crash failures in the system. The replication decision is taken based on two parameters: the availability and popularity of the data. The administrator requires a minimum rate of availability for each piece of data according to its access history in previous periods, but this availability may increase if the demand is high on this data. We also proposed a strategy to keep the desired availability respected even in case of a failure or rarity (no-popularity) of the data. The simulation results show the effectiveness of our replication strategy in terms of response time, the unavailability of requests, and availability.

Using Spatial Data and Land Surface Modeling to Monitor Evapotranspiration across Geographic Areas in South Korea (공간자료와 지면모형을 이용한 면적증발산 추정)

  • Yun J. I.;Nam J. C.;Hong S. Y.;Kim J.;Kim K. S.;Chung U.;Chae N. Y.;Choi T. J
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.6 no.3
    • /
    • pp.149-163
    • /
    • 2004
  • Evapotranspiration (ET) is a critical component of the hydrologic cycle which influences economic activities as well as the natural ecosystem. While there have been numerous studies on ET estimation for homogeneous areas using point measurements of meteorological variables, monitoring of spatial ET has not been possible at landscape - or watershed - scales. We propose a site-specific application of the land surface model, which is enabled by spatially interpolated input data at the desired resolution. Gyunggi Province of South Korea was divided into a regular grid of 10 million cells with 30m spacing and hourly temperature, humidity, wind, precipitation and solar irradiance were estimated for each grid cell by spatial interpolation of synoptic weather data. Topoclimatology models were used to accommodate effects of topography in a spatial interpolation procedure, including cold air drainage on nocturnal temperature and solar irradiance on daytime temperature. Satellite remote sensing data were used to classify the vegetation type of each grid cell, and corresponding spatial attributes including soil texture, canopy structure, and phenological features were identified. All data were fed into a standalone version of SiB2(Simple Biosphere Model 2) to simulate latent heat flux at each grid cell. A computer program was written for data management in the cell - based SiB2 operation such as extracting input data for SiB2 from grid matrices and recombining the output data back to the grid format. ET estimates at selected grid cells were validated against the actual measurement of latent heat fluxes by eddy covariance measurement. We applied this system to obtain the spatial ET of the study area on a continuous basis for the 2001-2003 period. The results showed a strong feasibility of using spatial - data driven land surface models for operational monitoring of regional ET.

The Design and Implementation of a Reusable Viewer Component

  • Kim, Hong-Gab;Lim, Young-Jae;Kim, Kyung-Ok
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.66-69
    • /
    • 2002
  • This article outlines the capabilities of a viewer component called GridViewer, and proves its reusability. GridViewer was designed for the construction of the image display part of GIS or remote sensing application software, and consequently it is particularly straightforward to closely couple GridViewer with access to very large images. Displaying is performed through pyramid structure, which enables to treat very large dataset up to several gigabytes in size under the limited capability of PC. GridViewer is free from responsibility to handle various formats of raster data files by taking grid coverage, which is designed by OGC to promote interoperability between implementations done by data vendors and software vendors providing analysis and grid processing implementations. GridViewer differs from other such viewer by allowing for clients to extend its function and capability by using small set of methods originally implemented in it. We show its reusability and expandability by applying it in developing application programs performing various functions not supported originally by the GridViewer COM component.

  • PDF

Significance and Research Challenges of Defensive and Offensive Cybersecurity in Smart Grid

  • Hana, Mujlid
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.12
    • /
    • pp.29-36
    • /
    • 2022
  • Smart grid (SG) software platforms and communication networks that run and manage the entire grid are increasingly concerned about cyber security. Characteristics of the smart grid networks, including heterogeneity, time restrictions, bandwidth, scalability, and other factors make it difficult to secure. The age-old strategy of "building bigger walls" is no longer sufficient given the rise in the quantity and size of cyberattacks as well as the sophisticated methods threat actor uses to hide their actions. Cyber security experts utilize technologies and procedures to defend IT systems and data from intruders. The primary objective of every organization's cybersecurity team is to safeguard data and information technology (IT) infrastructure. Consequently, further research is required to create guidelines and methods that are compatible with smart grid security. In this study, we have discussed objectives of of smart grid security, challenges of smart grid security, defensive cybersecurity techniques, offensive cybersecurity techniques and open research challenges of cybersecurity.

PC-Based Hybrid Grid Computing for Huge Biological Data Processing

  • Cho, Wan-Sup;Kim, Tae-Kyung;Na, Jong-Hwa
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.2
    • /
    • pp.569-579
    • /
    • 2006
  • Recently, the amount of genome sequence is increasing rapidly due to advanced computational techniques and experimental tools in the biological area. Sequence comparisons are very useful operations to predict the functions of the genes or proteins. However, it takes too much time to compare long sequence data and there are many research results for fast sequence comparisons. In this paper, we propose a hybrid grid system to improve the performance of the sequence comparisons based on the LanLinux system. Compared with conventional approaches, hybrid grid is easy to construct, maintain, and manage because there is no need to install SWs for every node. As a real experiment, we constructed an orthologous database for 89 prokaryotes just in a week under hybrid grid; note that it requires 33 weeks on a single computer.

  • PDF