DOI QR코드

DOI QR Code

Significance and Research Challenges of Defensive and Offensive Cybersecurity in Smart Grid

  • Hana, Mujlid (Department of Computer Engineering, Taif University)
  • Received : 2022.12.05
  • Published : 2022.12.30

Abstract

Smart grid (SG) software platforms and communication networks that run and manage the entire grid are increasingly concerned about cyber security. Characteristics of the smart grid networks, including heterogeneity, time restrictions, bandwidth, scalability, and other factors make it difficult to secure. The age-old strategy of "building bigger walls" is no longer sufficient given the rise in the quantity and size of cyberattacks as well as the sophisticated methods threat actor uses to hide their actions. Cyber security experts utilize technologies and procedures to defend IT systems and data from intruders. The primary objective of every organization's cybersecurity team is to safeguard data and information technology (IT) infrastructure. Consequently, further research is required to create guidelines and methods that are compatible with smart grid security. In this study, we have discussed objectives of of smart grid security, challenges of smart grid security, defensive cybersecurity techniques, offensive cybersecurity techniques and open research challenges of cybersecurity.

Keywords

References

  1. Apel, R. "Smart grid architecture model: methodology and practical application," presented at Workshop of Electrical Power Control Centers, 2013.
  2. NIST, Introduction to NISTTR 7628 Guidelines for Smart Grid Cyber Security. [Online]. Available: http://www.nist.gov/smartgrid/upload/nistir-7628 total.pdf
  3. Aslam, S., Herodotou, H., Mohsin, S. M., Javaid, N., Ashraf, N., & Aslam, S. "A survey on deep learning methods for power load and renewable energy forecasting in smart microgrids," Renewable and Sustainable Energy Reviews, 144, 110992, 2021.
  4. Mohsin, S. M., Javaid, N., Madani, S. A., Abbas, S. K., Akber, S. M. A., & Khan, Z. A. (2018, May). Appliance scheduling in smart homes with harmony search algorithm for different operation time intervals. In 2018 32nd International Conference on Advanced Information Networking and Applications Workshops (WAINA) (pp. 51-60). IEEE.
  5. Iqbal, Z., Javaid, N., Mohsin, S. M., Akber, S. M. A., Afzal, M. K., & Ishmanov, F. (2018). Performance analysis of hybridization of heuristic techniques for residential load scheduling. Energies, 11(10), 2861.
  6. Mohsin, S. M., Javaid, N., Madani, S. A., Akber, S. M. A., Manzoor, S., & Ahmad, J. (2018, May). Implementing elephant herding optimization algorithm with different operation time intervals for appliance scheduling in smart grid. In 2018 32nd International Conference on Advanced Information Networking and Applications Workshops (WAINA) (pp. 240-249). IEEE.
  7. Aslam, S., Javaid, S., Javaid, N,. Mohsin, S. M., Khan, S. S., & Akbar, M. (2018, July). An efficient home energy management and power trading in smart grid. In International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing (pp. 231-241). Springer, Cham.
  8. Aslam, S., Aslam, S., Herodotou, H., Mohsin, S. M., & Aurangzeb, A. (2020, February). Towards energy efficiency and power trading exploiting renewable energy in cloud data centers. In 2019 International Conference on Advances in the Emerging Computing Technologies (AECT) (pp. 1-6). IEEE.
  9. Wang, W. & Lu. Z., (2013) "Cyber security in the Smart Grid: Survey and challenges," Computer Networks, vol. 57, no. 7, pp. 1344-1371. https://doi.org/10.1016/j.comnet.2012.12.017
  10. Wang, W. "A survey on the communication architectures in smart grid," Computer Networks, vol. 55, no. 15, pp. 3604-3629,2011 https://doi.org/10.1016/j.comnet.2011.07.010
  11. Line, M. B., Tondel I. A., & Jaatun, M. G. "Cyber security challenges in Smart Grids," presented at the 2nd IEEE PES International Conference and Exhibition, Innovative Smart Grid Technologies (ISGT Europe), Manchester, 2011.
  12. Khurana, H., Hadley, M., Ning, L., & Frincke, D. A., "Smart grid security issues," iEEE Security & Privacy, vol. 7, no. I, pp. 81-85, 2010.
  13. Reed, G. F., Philip, P. A., Barchowsky, A., & Lippert, C. J.. (2010). "Sample survey of smart grid approaches and technology gap analysis," presented at Innovative Smart Grid Technologies Conference Europe.
  14. Shapsough, S., Qatan, F., Aburukba, R., Aloul, F., & Al Ali, A. R. (2015, October). Smart grid cyber security: Challenges and solutions. In 2015 international conference on smart grid and clean energy technologies (ICSGCE) (pp. 170-175). IEEE.
  15. Mehrfeld, J. (2020, July). Cyber security threats and incidents in industrial control systems. In International Conference on Human-Computer Interaction (pp. 599-608). Springer, Cham.
  16. Jang-Jaccard, J., & Nepal, S. (2014). A survey of emerging threats in cybersecurity. Journal of Computer and System Sciences, 80(5), 973- 993. https://doi.org/10.1016/j.jcss.2014.02.005
  17. Naidua, H., & Thanushkodib, K. "Recent trends in SCADA power distribution automation systems," Journal of Scientific and industrial Research, vol. 45, no. 3, pp. 205-218, 2010.
  18. Rezai, A., Keshavarzi, P., & Moravej, Z., "Secure SCADA communication by using a modified key management scheme," iSA Transactions, vol. 52, no. 4, pp. 517-524, July 2013. https://doi.org/10.1016/j.isatra.2013.02.005
  19. E. Knapp & R. Samani, "Security models for SCADA, ICS, and smart grid," Applied Cyber Security and the Smart Grid, pp. 101-123, 2013.
  20. O'Reilly, U. M., & Hemberg, E. (2018). An Artificial Coevolutionary Framework for Adversarial AI. In AAAI Fall Symposium: ALEC (pp. 50-55).
  21. Rubio, J. E., Alcaraz, C., Roman, R., & Lopez, J. (2019). Current cyberdefense trends in industrial control systems. Computers & Security, 87, 101561.
  22. Truong, T. C., Diep, Q. B., & Zelinka, I. (2020). Artificial intelligence in the cyber domain: Offense and defense. Symmetry, 12(3), 410.
  23. Leenen, L., & Meyer, T. (2021). Artificial intelligence and big data analytics in support of cyber defense. In Research Anthology on Artificial Intelligence Applications in Security (pp. 1738-1753). IGI Global.
  24. Almroth, J., & Gustafsson, T. (2020, September). CRATE Exercise Control-A cyber defense exercise management and support tool. In 2020 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW) (pp. 37-45). IEEE.
  25. Islam, M. M., & Al-Shaer, E. (2020, September). Active deception framework: An extensible development environment for adaptive cyber deception. In 2020 IEEE Secure Development (SecDev) (pp. 41-48). IEEE.
  26. Cifranic, N., Hallman, R. A., Romero-Mariona, J., Souza, B., Calton, T., & Coca, G. (2020). Decepti-SCADA: A cyber deception framework for active defense of networked critical infrastructures. Internet of Things, 12, 100320.
  27. Fugate, S., & Ferguson-Walter, K. (2019). Artificial intelligence and game theory models for defending critical networks with cyber deception. AI Magazine, 40(1), 49-62. https://doi.org/10.1609/aimag.v40i1.2849
  28. Abay, N. C., Akcora, C. G., Zhou, Y., Kantarcioglu, M., & Thuraisingham, B. (2019). Using deep learning to generate relational honeydata. In Autonomous Cyber Deception (pp. 3-19). Springer, Cham.
  29. Cho, J. H., Zhu, M., & Singh, M. (2019). Modeling and analysis of deception games based on hypergame theory. In Autonomous Cyber Deception (pp. 49-74). Springer, Cham.
  30. Lu, Z., Wang, C., & Zhao, S. (2020). Cyber deception for computer and network security: Survey and challenges. arXiv preprint arXiv:2007.14497.
  31. Wang, C., & Lu, Z. (2018). Cyber deception: Overview and the road ahead. IEEE Security & Privacy, 16(2), 80-85. https://doi.org/10.1109/MSP.2018.1870866
  32. Ahmed, S., Lee, Y., Hyun, S. H., & Koo, I. (2018). Feature selection-based detection of covert cyber deception assaults in smart grid communications networks using machine learning. IEEE Access, 6, 27518-27529. https://doi.org/10.1109/access.2018.2835527