• Title/Summary/Keyword: Grid data

Search Result 2,322, Processing Time 0.031 seconds

A Study on a Real-Time Aerial Image-Based UAV-USV Cooperative Guidance and Control Algorithm (실시간 항공영상 기반 UAV-USV 간 협응 유도·제어 알고리즘 개발)

  • Do-Kyun Kim;Jeong-Hyeon Kim;Hui-Hun Son;Si-Woong Choi;Dong-Han Kim;Chan Young Yeo;Jong-Yong Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.61 no.5
    • /
    • pp.324-333
    • /
    • 2024
  • This paper focuses on the cooperation between Unmanned Aerial Vehicle (UAV) and Unmanned Surface Vessel (USV). It aims to develop efficient guidance and control algorithms for USV based on obstacle identification and path planning from aerial images captured by UAV. Various obstacle scenarios were implemented using the Robot Operating System (ROS) and the Gazebo simulation environment. The aerial images transmitted in real-time from UAV to USV are processed using the computer vision-based deep learning model, You Only Look Once (YOLO), to classify and recognize elements such as the water surface, obstacles, and ships. The recognized data is used to create a two-dimensional grid map. Algorithms such as A* and Rapidly-exploring Random Tree star (RRT*) were used for path planning. This process enhances the guidance and control strategies within the UAV-USV collaborative system, especially improving the navigational capabilities of the USV in complex and dynamic environments. This research offers significant insights into obstacle avoidance and path planning in maritime environments and proposes new directions for the integrated operation of UAV and USV.

Spatio-temporal enhancement of forest fire risk index using weather forecast and satellite data in South Korea (기상 예보 및 위성 자료를 이용한 우리나라 산불위험지수의 시공간적 고도화)

  • KANG, Yoo-Jin;PARK, Su-min;JANG, Eun-na;IM, Jung-ho;KWON, Chun-Geun;LEE, Suk-Jun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.4
    • /
    • pp.116-130
    • /
    • 2019
  • In South Korea, forest fire occurrences are increasing in size and duration due to various factors such as the increase in fuel materials and frequent drying conditions in forests. Therefore, it is necessary to minimize the damage caused by forest fires by appropriately providing the probability of forest fire risk. The purpose of this study is to improve the Daily Weather Index(DWI) provided by the current forest fire forecasting system in South Korea. A new Fire Risk Index(FRI) is proposed in this study, which is provided in a 5km grid through the synergistic use of numerical weather forecast data, satellite-based drought indices, and forest fire-prone areas. The FRI is calculated based on the product of the Fine Fuel Moisture Code(FFMC) optimized for Korea, an integrated drought index, and spatio-temporal weighting approaches. In order to improve the temporal accuracy of forest fire risk, monthly weights were applied based on the forest fire occurrences by month. Similarly, spatial weights were applied using the forest fire density information to improve the spatial accuracy of forest fire risk. In the time series analysis of the number of monthly forest fires and the FRI, the relationship between the two were well simulated. In addition, it was possible to provide more spatially detailed information on forest fire risk when using FRI in the 5km grid than DWI based on administrative units. The research findings from this study can help make appropriate decisions before and after forest fire occurrences.

Assessment of CO2 Geological Storage Capacity for Basalt Flow Structure around PZ-1 Exploration Well in the Southern Continental Shelf of Korea (남해 대륙붕 PZ-1 시추공 주변 현무암 대지 구조의 CO2 지중저장용량 평가)

  • Shin, Seung Yong;Kang, Moohee;Shinn, Young Jae;Cheong, Snons
    • Economic and Environmental Geology
    • /
    • v.53 no.1
    • /
    • pp.33-43
    • /
    • 2020
  • CO2 geological storage is currently considered as the most stable and effective technology for greenhouse gas reduction. The saline formations for CO2 geological storage are generally located at a depth of more than 800 m where CO2 can be stored in a supercritical state, and an extensive impermeable cap rock that prevents CO2 leakage to the surface should be distributed above the saline formations. Trough analysis of seismic and well data, we identified the basalt flow structure for potential CO2 storage where saline formation is overlain by basalt cap rock around PZ-1 exploration well in the Southern Continental Shelf of Korea. To evaluate CO2 storage capacity of the saline formation, total porosity and CO2 density are calculated based on well logging data of PZ-1 well. We constructed a 3D geological grid model with a certain size in the x, y and z axis directions for volume estimates of the saline formation, and performed a property modeling to assign total porosity to the geological grid. The estimated average CO2 geological storage capacity evaluated by the U.S. DOE method for the saline formation covered by the basalt cap rock is 84.17 Mt of CO2(ranges from 42.07 to 143.79 Mt of CO2).

Estimation of Changes in Potential Forest Area under Climate Change (기후변화하(氣候變化下)에서 잠재삼림면적(潛在森林面積)의 변화(變化) 예측(豫測))

  • Cha, Gyung Soo
    • Journal of Korean Society of Forest Science
    • /
    • v.87 no.3
    • /
    • pp.358-365
    • /
    • 1998
  • To offer the basic information for sustainable production of forest resources and conservation of the global environment, change in potential natural vegetation (PNV) associated with climate change due to doubling atmospheric carbon dioxide ($2{\times}CO_2$) was estimated with the global natural vegetation mapping system based an K${\ddot{o}}$ppen scheme. The system interpolates climate data spherically to each grid cell, determines the vegetation types onto the grid cell, and produces potential vegetation map and area on the globe and continents. The climate data consist of the current, ($1{\times}CO_2$) climate prior to AD 1958 observed at some 2,000 stations and the doubling ($2{\times}CO_2$) climate estimated from Meteorological Research Institute of Japan. The vegetation zone under the $2{\times}CO_2$ climate scenario expanded mainly toward the poles due to the rise in temperature. The changed PNV area on the globe amounts to 1/3 (4.91 billion (G) ha) of the total land area (15.04 Gha). Kappa statistic for judging agreement between the patterns of vegetation distribution under $1{\times}CO_2$ climate and $2{\times}CO_2$ climates shows good agreement (0.63) for the globe as a whole. The most stable areas are desert and ice. The potential forest area (PFA) was estimated at 6.82 Gha of the land area in $2{\times}CO_2$ climate scenario. In terms of continental changes in PFA, North America and Asis are increased under the $2{\times}CO_2$ climate. However, the potential forest arms of the other continents are decreased by the climate. Europe has no change in the PFA. Especially, the expansion of desert area in Oceania would be accelerated by the $2{\times}CO_2$ climate.

  • PDF

Creation of Actual CCTV Surveillance Map Using Point Cloud Acquired by Mobile Mapping System (MMS 점군 데이터를 이용한 CCTV의 실질적 감시영역 추출)

  • Choi, Wonjun;Park, Soyeon;Choi, Yoonjo;Hong, Seunghwan;Kim, Namhoon;Sohn, Hong-Gyoo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_3
    • /
    • pp.1361-1371
    • /
    • 2021
  • Among smart city services, the crime and disaster prevention sector accounted for the highest 24% in 2018. The most important platform for providing real-time situation information is CCTV (Closed-Circuit Television). Therefore, it is essential to create the actual CCTV surveillance coverage to maximize the usability of CCTV. However, the amount of CCTV installed in Korea exceeds one million units, including those operated by the local government, and manual identification of CCTV coverage is a time-consuming and inefficient process. This study proposed a method to efficiently construct CCTV's actual surveillance coverage and reduce the time required for the decision-maker to manage the situation. For this purpose, first, the exterior orientation parameters and focal lengths of the pre-installed CCTV cameras, which are difficult to access, were calculated using the point cloud data of the MMS (Mobile Mapping System), and the FOV (Field of View) was calculated accordingly. Second, using the FOV result calculated in the first step, CCTV's actual surveillance coverage area was constructed with 1 m, 2 m, 3 m, 5 m, and 10 m grid interval considering the occluded regions caused by the buildings. As a result of applying our approach to 5 CCTV images located in Uljin-gun, Gyeongsnagbuk-do the average re-projection error was about 9.31 pixels. The coordinate difference between calculated CCTV and location obtained from MMS was about 1.688 m on average. When the grid length was 3 m, the surveillance coverage calculated through our research matched the actual surveillance obtained from visual inspection with a minimum of 70.21% to a maximum of 93.82%.

Minimizing Estimation Errors of a Wind Velocity Forecasting Technique That Functions as an Early Warning System in the Agricultural Sector (농업기상재해 조기경보시스템의 풍속 예측 기법 개선 연구)

  • Kim, Soo-ock;Park, Joo-Hyeon;Hwang, Kyu-Hong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.2
    • /
    • pp.63-77
    • /
    • 2022
  • Our aim was to reduce estimation errors of a wind velocity model used as an early warning system for weather risk management in the agricultural sector. The Rural Development Administration (RDA) agricultural weather observation network's wind velocity data and its corresponding estimated data from January to December 2020 were used to calculate linear regression equations (Y = aX + b). In each linear regression, the wind estimation error at 87 points and eight time slots per day (00:00, 03:00, 06:00, 09.00, 12.00, 15.00, 18.00, and 21:00) is the dependent variable (Y), while the estimated wind velocity is the independent variable (X). When the correlation coefficient exceeded 0.5, the regression equation was used as the wind velocity correction equation. In contrast, when the correlation coefficient was less than 0.5, the mean error (ME) at the corresponding points and time slots was substituted as the correction value instead of the regression equation. To enable the use of wind velocity model at a national scale, a distribution map with a grid resolution of 250 m was created. This objective was achieved b y performing a spatial interpolation with an inverse distance weighted (IDW) technique using the regression coefficients (a and b), the correlation coefficient (R), and the ME values for the 87 points and eight time slots. Interpolated grid values for 13 weather observation points in rural areas were then extracted. The wind velocity estimation errors for 13 points from January to December 2019 were corrected and compared with the system's values. After correction, the mean ME of the wind velocities reduced from 0.68 m/s to 0.45 m/s, while the mean RMSE reduced from 1.30 m/s to 1.05 m/s. In conclusion, the system's wind velocities were overestimated across all time slots; however, after the correction model was applied, the overestimation reduced in all time slots, except for 15:00. The ME and RMSE improved b y 33% and 19.2%, respectively. In our system, the warning for wind damage risk to crops is driven by the daily maximum wind speed derived from the daily mean wind speed obtained eight times per day. This approach is expected to reduce false alarms within the context of strong wind risk, by reducing the overestimation of wind velocities.

Estimation of Precipitable Water from the GMS-5 Split Window Data (GMS-5 Split Window 자료를 이용한 가강수량 산출)

  • 손승희;정효상;김금란;이정환
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.1
    • /
    • pp.53-68
    • /
    • 1998
  • Observation of hydrometeors' behavior in the atmosphere is important to understand weather and climate. By conventional observations, we can get the distribution of water vapor at limited number of points on the earth. In this study, the precipitable water has been estimated from the split window channel data on GMS-5 based upon the technique developed by Chesters et al.(1983). To retrieve the precipitable water, water vapor absorption parameter depending on filter function of sensor has been derived using the regression analysis between the split window channel data and the radiosonde data observed at Osan, Pohang, Kwangiu and Cheju staions for 4 months. The air temperature of 700 hPa from the Global Spectral Model of Korea Meteorological Administration (GSM/KMA) has been used as mean air temperature for single layer radiation model. The retrieved precipitable water for the period from August 1996 through December 1996 are compared to radiosonde data. It is shown that the root mean square differences between radiosonde observations and the GMS-5 retrievals range from 0.65 g/$cm^2$ to 1.09 g/$cm^2$ with correlation coefficient of 0.46 on hourly basis. The monthly distribution of precipitable water from GMS-5 shows almost good representation in large scale. Precipitable water is produced 4 times a day at Korea Meteorological Administration in the form of grid point data with 0.5 degree lat./lon. resolution. The data can be used in the objective analysis for numerical weather prediction and to increase the accuracy of humidity analysis especially under clear sky condition. And also, the data is a useful complement to existing data set for climatological research. But it is necessary to get higher correlation between radiosonde observations and the GMS-5 retrievals for operational applications.

GIS based Development of Module and Algorithm for Automatic Catchment Delineation Using Korean Reach File (GIS 기반의 하천망분석도 집수구역 자동 분할을 위한 알고리듬 및 모듈 개발)

  • PARK, Yong-Gil;KIM, Kye-Hyun;YOO, Jae-Hyun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.20 no.4
    • /
    • pp.126-138
    • /
    • 2017
  • Recently, the national interest in environment is increasing and for dealing with water environment-related issues swiftly and accurately, the demand to facilitate the analysis of water environment data using a GIS is growing. To meet such growing demands, a spatial network data-based stream network analysis map(Korean Reach File; KRF) supporting spatial analysis of water environment data was developed and is being provided. However, there is a difficulty in delineating catchment areas, which are the basis of supplying spatial data including relevant information frequently required by the users such as establishing remediation measures against water pollution accidents. Therefore, in this study, the development of a computer program was made. The development process included steps such as designing a delineation method, and developing an algorithm and modules. DEM(Digital Elevation Model) and FDR(Flow Direction) were used as the major data to automatically delineate catchment areas. The algorithm for the delineation of catchment areas was developed through three stages; catchment area grid extraction, boundary point extraction, and boundary line division. Also, an add-in catchment area delineation module, based on ArcGIS from ESRI, was developed in the consideration of productivity and utility of the program. Using the developed program, the catchment areas were delineated and they were compared to the catchment areas currently used by the government. The results showed that the catchment areas were delineated efficiently using the digital elevation data. Especially, in the regions with clear topographical slopes, they were delineated accurately and swiftly. Although in some regions with flat fields of paddles and downtowns or well-organized drainage facilities, the catchment areas were not segmented accurately, the program definitely reduce the processing time to delineate existing catchment areas. In the future, more efforts should be made to enhance current algorithm to facilitate the use of the higher precision of digital elevation data, and furthermore reducing the calculation time for processing large data volume.

Effect of the Cone Index on the Work Load of the Agricultural Tractor (원추 지수가 트랙터 작업 부하에 미치는 영향)

  • Kim, Wan Soo;Kim, Yong Joo;Baek, Seung Min;Baek, Seung Yun;Moon, Seok Pyo;Lee, Nam Gyu;Kim, Taek Jin;Siddique, Md Abu Ayub;Jeon, Hyeon Ho;Kim, Yeon Soo
    • Journal of Drive and Control
    • /
    • v.17 no.2
    • /
    • pp.9-18
    • /
    • 2020
  • The purpose of this study was to analyze the effect of the soil cone index (CI) on the tractor work load. A load measurement system was constructed for measuring the field data. The field sites were divided into grids (3×3 m), and the cone index was measured at the center of each grid. The work load measured through the plow tillage was matched with the soil cone index. The matched data were grouped at 600 kPa intervals based on the cone index. The work load according to the cone index was analyzed for engine, axle, and traction load, respectively. The results showed that when the cone index increased, engine torque decreased by up to 9%, and the engine rotational speed and brake-specific fuel consumption increased by up to 5% and 3%, respectively. As the cone index increased, the traction and tillage depth were inversely proportional to the cone index, decreasing 7% and 18%, respectively and the traction and tillage depth were directly proportional to the cone index, increasing 13% and 12%, respectively. Thus, it was found that the cone index had a major influence on the engine, axle, and traction loads of the tractor.

Overlay Rendering of Multiple Geo-Based Images Using WebGL Blending Technique (WebGL 블렌딩 기법을 이용한 다중 공간영상정보 중첩 가시화)

  • Kim, Kwang-Seob;Lee, Ki-Won
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.4
    • /
    • pp.104-113
    • /
    • 2012
  • Followed by that HTML5(Hypertext Markup Language5) was introduced, many kinds of program and services based on this have been developed and released. HTML5 is technical standard specifications for cross platform for personal computers and mobile devices so that it is expected that continuing progress and wide application in the both sides of the academic and the industrial fields increase. This study is to design and implement a mobile application program for overlay rendering with DEM and other geo-based image sets using HTML5 WebGL for 3D graphic processing on web environment. Particularly, the blending technique was used for overlay processing with multiple images. Among available WebGL frameworks, CubicVR.js was adopted, and various blending techniques were provided in the user interface for general users. For the actual application in the study area around the Sejong city, serveral types of geo-based data sets were used and processed: KOMPSAT-2 images, ALOS PALSAR SAR images, and grid data by environment measurements. While, DEM for 3D viewing with these geo-based images was produced using contour information of the digital map sets. This work demonstrates possibilities that new types of contents and service system using geo-based images can be extracted and applied.