• Title/Summary/Keyword: Grid climate data

Search Result 138, Processing Time 0.033 seconds

Large-Scale Slope Stability Analysis Using Climate Change Scenario (1): Methodologies (기후변화 시나리오를 이용한 광역 사면안정 해석(1): 방법론)

  • Choi, Byoung-Seub;Oh, Sung-Ryul;Lee, Kun-Hyuk;Lee, Gi-Ha;Kwon, Hyun-Han
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.16 no.3
    • /
    • pp.193-210
    • /
    • 2013
  • This study aims to assess the slope stability variation of Jeollabuk-do drainage areas by RCM model outputs based on A1B climate change scenario and infinite slope stability model based on the specific catchment area concept. For this objective, we downscaled RCM data in time and space: from watershed scale to rain gauge scale in space and from monthly data to daily data in time and also developed the GIS-based infinite slope stability model based on the concept of specific catchment area to calculate spatially-distributed wetness index. For model parameterization, topographic, geologic, forestry digital map were used and model parameters were set up in format of grid cells($90m{\times}90m$). Finally, we applied the future daily rainfall data to the infinite slope stability model and then assess slope stability variation under the climate change scenario. This research consists of two papers: the first paper focuses on the methodologies of climate change scenario preparation and infinite slope stability model development.

Prediction of ocean surface current: Research status, challenges, and opportunities. A review

  • Ittaka Aldini;Adhistya E. Permanasari;Risanuri Hidayat;Andri Ramdhan
    • Ocean Systems Engineering
    • /
    • v.14 no.1
    • /
    • pp.85-99
    • /
    • 2024
  • Ocean surface currents have an essential role in the Earth's climate system and significantly impact the marine ecosystem, weather patterns, and human activities. However, predicting ocean surface currents remains challenging due to the complexity and variability of the oceanic processes involved. This review article provides an overview of the current research status, challenges, and opportunities in the prediction of ocean surface currents. We discuss the various observational and modelling approaches used to study ocean surface currents, including satellite remote sensing, in situ measurements, and numerical models. We also highlight the major challenges facing the prediction of ocean surface currents, such as data assimilation, model-observation integration, and the representation of sub-grid scale processes. In this article, we suggest that future research should focus on developing advanced modeling techniques, such as machine learning, and the integration of multiple observational platforms to improve the accuracy and skill of ocean surface current predictions. We also emphasize the need to address the limitations of observing instruments, such as delays in receiving data, versioning errors, missing data, and undocumented data processing techniques. Improving data availability and quality will be essential for enhancing the accuracy of predictions. The future research should focus on developing methods for effective bias correction, a series of data preprocessing procedures, and utilizing combined models and xAI models to incorporate data from various sources. Advancements in predicting ocean surface currents will benefit various applications such as maritime operations, climate studies, and ecosystem management.

Application of Common Land Model in the Nakdong River Basin, Korea for Simulation of Runoff and Land Surface Temperature (Common Land Model의 국내 적용성 평가를 위한 유량 및 지면온도 모의)

  • Lee, Keon Haeng;Choi, Hyun Il;Kwon, Hyun Han;Kim, Sangdan;Chung, Eu Gene;Kim, Kyunghyun
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.2
    • /
    • pp.247-258
    • /
    • 2013
  • A grid-based configuration of Land Surface Models (LSMs) coupled with a climate model can be advantageous in impact assessment of climate change for a large scale area. We assessed the applicability of Common Land Model (CoLM) to runoff and land surface temperature (LST) simulations at the domain that encompasses the Nakdong river basin. To establish a high resolution model configuration of a $1km{\times}1km$ grid size, both surface boundary condition and atmospheric inputs from the observed weather data in 2009 were adjusted to the same resolution. The Leaf Area Index (LAI) was collected from MODerate esolution Imaging Spectroradiometer (MODIS) and the downward short wave flux was produced by a nonstationary multi-site weather state model. Compared with the observed runoffs at the stations on Nakdong river, simulated runoffs properly responded to rainfall. The spatial features and the seasonal variations of the domain fairly well were captured in the simulated LSTs as well. The monthly and seasonal trend of LST were described well compared to the observations, however, the monthly averaged simulated LST exceeded the observed up to $2^{\circ}C$ at the 24 stations. From the results of our study, it is shown that high resolution LSMs can be used to evaluate not only quantity but also quality of water resources as it can capture the geographical features of the area of interest and its rainfall-runoff response.

Evaluation on Climate Change Vulnerability of Korea National Parks (국립공원의 기후변화 취약성 평가)

  • Kim, Chong-Chun;Kim, Tae-Geun
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.1
    • /
    • pp.42-50
    • /
    • 2016
  • The purpose of this study is to set the direction to manage national parks to cope with climate change, and offer basic data to establish the relevant policies. Towards this end, this study analyzed the current and future climate change vulnerability of national parks using the 24 proxy variables of vulnerability in the LCCGIS program, a tool to evaluate climate change vulnerability developed by the National Institute of Environmental Research. To analyze and evaluate the current status of and future prospect on climate change vulnerability of national parks, the proxy variable value of climate exposure was calculated by making a GIS spatial thematic map with $1km{\times}1km$ grid unit through the application of climate change scenario (RCP8.5). The values of proxy variables of sensitivity and adaptation capability were calculated using the basic statistics of national parks. The values of three vulnerability evaluation items were calculated regarding the present (2010s) and future (2050s). The current values were applied to the future equally under the assumption that the current state of the proxy variables related to sensitivity and adaptation capability without a future prediction scenario continues. Seoraksan, Odaesan, Jirisan and Chiaksan National Parks are relatively bigger in terms of the current (2010s) climate exposure. The national park, where the variation of heat wave is the biggest is Wolchulsan National Park. The biggest variation of drought occurs to Gyeryongsan National Park, and Woraksan National Park has the biggest variation of heavy rain. Concerning the climate change sensitivity of national parks, Jirisan National Park is the most sensitive, and adaptation capability is evaluated to be the highest. Gayasan National Park's sensitivity is the lowest, and Chiaksan National Park is the lowest in adaptation capability. As for climate change vulnerability, Seoraksan, Odaesan, Chiaksan and Deogyusan National Parks and Hallyeohaesang National Park are evaluated as high at the current period. The national parks, where future vulnerability change is projected to be the biggest, are Jirisan, Woraksan, Chiaksan and Sobaeksan National Parks in the order. Because such items evaluating the climate change vulnerability of national parks as climate exposure, sensitivity and adaptation capability show relative differences according to national parks' local climate environment, it will be necessary to devise the adaptation measures reflecting the local climate environmental characteristics of national parks, rather than establishing uniform adaptation measures targeting all national parks. The results of this study that evaluated climate change vulnerability using climate exposure, sensitivity and adaptation capability targeting Korea's national parks are expected to be used as basic data for the establishment of measures to adapt to climate change in consideration of national parks' local climate environmental characteristics. However, this study analyzed using only the proxy variables presented by LCCGIS program under the situation that few studies on the evaluation of climate change vulnerability of national parks are found, and therefore this study may not reflect overall national parks' environment properly. A further study on setting weights together with an objective review on more proper proxy variables needs to be carried out in order to evaluate the climate change vulnerability of national parks.

Thermal and Electrical Energy Mix Optimization(EMO) Method for Real Large-scaled Residential Town Plan

  • Kang, Cha-Nyeong;Cho, Soo-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.513-520
    • /
    • 2018
  • Since Paris Climate Change Conference in 2015, many policies to reduce the emission of greenhouse gas have been accelerating, which are mainly related to renewable energy resources and micro-grid. Presently, the technology development and demonstration projects are mostly focused on diversifying the power resources by adding wind turbine, photo-voltaic and battery storage system in the island-type small micro-grid. It is expected that the large-scaled micro-grid projects based on the regional district and town/complex city, e.g. the block type micro-grid project in Daegu national industrial complex will proceed in the near future. In this case, the economic cost or the carbon emission can be optimized by the efficient operation of energy mix and the appropriate construction of electric and heat supplying facilities such as cogeneration, renewable energy resources, BESS, thermal storage and the existing heat and electricity supplying networks. However, when planning a large residential town or city, the concrete plan of the energy infrastructure has not been established until the construction plan stage and provided by the individual energy suppliers of water, heat, electricity and gas. So, it is difficult to build the efficient energy portfolio considering the characteristics of town or city. This paper introduces an energy mix optimization(EMO) method to determine the optimal capacity of thermal and electric resources which can be applied in the design stage of the real large-scaled residential town or city, and examines the feasibility of the proposed method by applying the real heat and electricity demand data of large-scale residential towns with thousands of households and by comparing the result of HOMER simulation developed by National Renewable Energy Laboratory(NREL).

Agroclimatology of North Korea for Paddy Rice Cultivation: Preliminary Results from a Simulation Experiment (생육모의에 의한 북한지방 시ㆍ군별 벼 재배기후 예비분석)

  • Yun Jin-Il;Lee Kwang-Hoe
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.2 no.2
    • /
    • pp.47-61
    • /
    • 2000
  • Agroclimatic zoning was done for paddy rice culture in North Korea based on a simulation experiment. Daily weather data for the experiment were generated by 3 steps consisting of spatial interpolation based on topoclimatological relationships, zonal summarization of grid cell values, and conversion of monthly climate data to daily weather data. Regression models for monthly climatological temperature estimation were derived from a statistical procedure using monthly averages of 51 standard weather stations in South and North Korea (1981-1994) and their spatial variables such as latitude, altitude, distance from the coast, sloping angle, and aspect-dependent field of view (openness). Selected models (0.4 to 1.6$^{\circ}C$ RMSE) were applied to the generation of monthly temperature surface over the entire North Korean territory on 1 km$\times$l km grid spacing. Monthly precipitation data were prepared by a procedure described in Yun (2000). Solar radiation data for 27 North Korean stations were reproduced by applying a relationship found in South Korea ([Solar Radiation, MJ m$^{-2}$ day$^{-1}$ ] =0.344 + 0.4756 [Extraterrestrial Solar Irradiance) + 0.0299 [Openness toward south, 0 - 255) - 1.307 [Cloud amount, 0 - 10) - 0.01 [Relative humidity, %), $r^2$=0.92, RMSE = 0.95 ). Monthly solar irradiance data of 27 points calculated from the reproduced data set were converted to 1 km$\times$1 km grid data by inverse distance weighted interpolation. The grid cell values of monthly temperature, solar radiation, and precipitation were summed up to represent corresponding county, which will serve as a land unit for the growth simulation. Finally, we randomly generated daily maximum and minimum temperature, solar irradiance and precipitation data for 30 years from the monthly climatic data for each county based on a statistical method suggested by Pickering et a1. (1994). CERES-rice, a rice growth simulation model, was tuned to accommodate agronomic characteristics of major North Korean cultivars based on observed phenological and yield data at two sites in South Korea during 1995~1998. Daily weather data were fed into the model to simulate the crop status at 183 counties in North Korea for 30 years. Results were analyzed with respect to spatial and temporal variation in yield and maturity, and used to score the suitability of the county for paddy rice culture.

  • PDF

Development and Assessment of LSTM Model for Correcting Underestimation of Water Temperature in Korean Marine Heatwave Prediction System (한반도 고수온 예측 시스템의 수온 과소모의 보정을 위한 LSTM 모델 구축 및 예측성 평가)

  • NA KYOUNG IM;HYUNKEUN JIN;GYUNDO PAK;YOUNG-GYU PARK;KYEONG OK KIM;YONGHAN CHOI;YOUNG HO KIM
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.29 no.2
    • /
    • pp.101-115
    • /
    • 2024
  • The ocean heatwave is emerging as a major issue due to global warming, posing a direct threat to marine ecosystems and humanity through decreased food resources and reduced carbon absorption capacity of the oceans. Consequently, the prediction of ocean heatwaves in the vicinity of the Korean Peninsula is becoming increasingly important for marine environmental monitoring and management. In this study, an LSTM model was developed to improve the underestimated prediction of ocean heatwaves caused by the coarse vertical grid system of the Korean Peninsula Ocean Prediction System. Based on the results of ocean heatwave predictions for the Korean Peninsula conducted in 2023, as well as those generated by the LSTM model, the performance of heatwave predictions in the East Sea, Yellow Sea, and South Sea areas surrounding the Korean Peninsula was evaluated. The LSTM model developed in this study significantly improved the prediction performance of sea surface temperatures during periods of temperature increase in all three regions. However, its effectiveness in improving prediction performance during periods of temperature decrease or before temperature rise initiation was limited. This demonstrates the potential of the LSTM model to address the underestimated prediction of ocean heatwaves caused by the coarse vertical grid system during periods of enhanced stratification. It is anticipated that the utility of data-driven artificial intelligence models will expand in the future to improve the prediction performance of dynamical models or even replace them.

Analysis of Connected Operations of PV Source and Li Energy Storage Equipment to Power System (태양광 전원과 리튬 에너지 저장장치의 연계운전시 특성 해석)

  • Kim, Deok Young
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.8
    • /
    • pp.106-112
    • /
    • 2014
  • This paper presents the analysis of connected operation of photo voltaic source and Li energy storage system. The micro-grid has been installed and operated for several years at the campus of USF and has been a role of test bed. Photo voltaic source has been strongly influenced by the location, weather and climate of a installed area and Li battery is connected directly to the photo voltaic source to compensate for the limitations. The Li battery is operated to supply power output to the grid by the charging or discharging mode based on the average power output of the PV source which is calculated from monitored data for several years. The load of the PV and Li battery system is operated as a severe loading condition and the operating characteristics of PV source and Li battery are analyzed in detail. In connected operations of PV and Li battery to power system, the PV and Li battery is operated to supply constant power during only day time or peak time to increase load shedding ratio and efficient usage of generation sources in power system.

Numerical Simulation of the Asian Monsoon for the Mid-Holocene Using a Numerical Model (수치모델을 이용한 홀로세 중기의 아시아 몬순순환 변화 연구)

  • Kim, Seong-Joong;Lee, Bang-Yong;Park, Yoo-Min;Suk, Bong-Chool
    • Ocean and Polar Research
    • /
    • v.27 no.3
    • /
    • pp.289-297
    • /
    • 2005
  • The change in global climate and Asian monsoon patterns during the mid-Holocene, 6000 years before present (6 ka), is simulated by a climate model at spectral truncations of T170 with 18 vertical layers, corresponding to grid-cell sizes of roughly 75km. The present simulation is forced with the observed monthly data of sea surface temperatures, and the specified concentration of atmospheric carbon dioxide, while in the mid-Holocene experiment, orbital parameters such as obliquity, precession, and eccentricity are changed to the 6ka conditions. Under such conditions, the precipitation associated with the summer monsoon is enhanced over a wider zonal band from the Middle East to Southeast Asia, while no significant alteration takes Place in winter. The monsoonal wind also increases over the Arabian Sea, showing the enhanced southwesterly wind during summer and northeasterly wind during winter. Overall, the showing of the Asian monsoon is enhanced during the mid-Holocene, especially in summer, which is consistent with the proxy estimates and other previous model simulations.

Analysis of Extreme Sea Surface Temperature along the Western Coastal area of Chungnam: Current Status and Future Projections

  • Byoung-Jun Lim;You-Soon Chang
    • Journal of the Korean earth science society
    • /
    • v.44 no.4
    • /
    • pp.255-263
    • /
    • 2023
  • Western coastal area of Chungnam, including Cheonsu Bay and Garorim Bay, has suffered from hot and cold extremes. In this study, the extreme sea surface temperature on the western coast of Chungnam was analyzed using the quantile regression method, which extracts the linear regression values in all quantiles. The regional MOHID (MOdelo HIDrodinâmico) model, with a high resolution on a 1/60° grid, was constructed to reproduce the extreme sea surface temperature. For future prediction, the SSP5-8.5 scenario data of the CMIP6 model were used to simulate sea surface temperature variability. Results showed that the extreme sea surface temperature of Cheonsu Bay in August 2017 was successfully simulated, and this extreme sea surface temperature had a significant negative correlation with the Pacific decadal variability index. As a result of future climate prediction, it was found that an average of 2.9℃ increased during the simulation period of 86 years in the Chungnam west coast and there was a seasonal difference (3.2℃ in summer, 2.4℃ in winter). These seasonal differences indicate an increase in the annual temperature range, suggesting that extreme events may occur more frequently in the future.