• Title/Summary/Keyword: Grid Generator

Search Result 457, Processing Time 0.022 seconds

Soft Start-up Characteristics Analysis of Squirrel Cage Induction Generator (농형 유도 발전기의 소프트 기동 특성 해석)

  • Kim, Jong-Gyeum;Park, Young-Jeen
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.1
    • /
    • pp.103-107
    • /
    • 2016
  • In general, the voltage stability of induction generator is lower than synchronous generator. Induction generator has a number of advantages over the synchronous generator on the side of price and maintenance. So Induction generator has been applied to the small hydroelectric power of low output. Induction generator usually generates a high current during grid connection. The high current that occurs during grid connection can cause a voltage drop in the system. In order to increase the supply of the induction generator, it is necessary to propose a method of reducing high current. This paper proposes some method of the soft start to reduce voltage drop caused by the large starting current. soft-start method has high voltage drop effect than direct start method, control of firing angle can be increased the voltage drop effect.

Implementation and Control of AC-DC-AC Power Converter in a Grid-Connected Variable Speed Wind Turbine System with Synchronous Generator (동기기를 사용한 계통연계형 가변속 풍력발전 시스템의 AC-DC-AC 컨버터 구현 및 제어)

  • Song Seung-Ho;Kim Sung-Ju;Hahm Nyon-Kun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.12
    • /
    • pp.609-615
    • /
    • 2005
  • A 30kW electrical power conversion system is developed for a variable speed wind turbine. In the wind energy conversion system(WECS) a synchronous generator with field current excitation converts the mechanical energy into electrical energy. As the voltage and the frequency of the generator output vary according to the wind speed, a 6-bridge diode rectifier and a PWM boost chopper is utilized as an ac-dc converter maintaining the constant dc-link voltage with only single switch control. An input current control algorithm for maximum power generation during the variable speed operation is proposed without any usage of speed sensor. Grid connection type PWM inverter converts dc input power to ac output currents into the grid. The active power to the grid is controlled by q-axis current and the reactive power is controlled by d-axis current with appropriate decoupling. The phase angle of utility voltage is detected using software PLL(Phased Locked Loop) in d-q synchronous reference frame. Experimental results from the test of 30kW prototype wind turbine system show that the generator power can be controlled effectively during the variable speed operation without any speed sensor.

Influence Analysis of Power Grid Harmonics on Synchronous Hydro Generators

  • Qiu, Hongbo;Fan, Xiaobin;Feng, Jianqin;Yang, Cunxiang
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1577-1584
    • /
    • 2018
  • The content of harmonic current increases with an increase in the number of power electronic devices in power grid. When a generator is directly connected to the power grid through a step-up transformer, the influence of the harmonic currents on the generator is inevitable. To study the influences of harmonics on generators, a 24-MW bulb tubular turbine generator is taken as an example in this paper. A 2-D transient electromagnetic field model is established. Through a comparative analysis of the data of experiments and simulations, the correctness of the model is verified. The values of the air gap magnetic density, torque and losses of the generator under various conditions are calculated using the finite element method. Taking the rated condition as a reference, the influence of the harmonic currents on the magnetic flux density is analyzed. It is confirmed that the time harmonic is a key factor affecting the generator performance. At the same time, the effects of harmonic currents on the torque ripple, average torque and eddy current loss of the generator are studied, and the mechanism of the variation of the eddy current loss is also discussed.

Optimal Operation Scheme and Reliability Index Improvement of Micro Grid Using Energy Storage Systems (에너지 저장장치를 이용한 마이크로 그리드의 최적운영 및 신뢰도 지수 개선)

  • Kim, Kyu-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.2
    • /
    • pp.205-210
    • /
    • 2014
  • The micro grid considered in this paper consists of a diesel generator, a photovoltaic array, a wind turbine, a fuel cell, and a energy storage system. This paper explains and simulates the micro grid components in terms of accuracy and efficiency of having a system model based on the costs of fuel as well as operation and maintenance. For operational efficiency, the objective function in a diesel generator consists of the fuel cost function similar to the cost functions used for the conventional fossil-fuel generating plants. The wind turbine generator is modeled by the characteristics of variable output. The optimization is aimed at minimizing the cost function of the system while constraining it to meet the customer demand and safety of micro grid. The operating cost in fuel-cell system includes the fuel costs and the efficiency for fuel to generate electric power. To develop the overall system model gives a possibility to minimize of the total cost of micro grid. The application of optimal operation can save the interruption costs as well as the operating costs, and improve reliability index in micro grid.

A New Flux Tracking LVRT Control Scheme for Doubly Fed Induction Generators

  • Park, Sun-Young;Ahn, Hyung-Jin;Lee, Dong-Myung
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.3
    • /
    • pp.306-312
    • /
    • 2013
  • Doubly fed induction generator (DFIG) systems widely used globally are highly sensitive to the grid disturbance due to the structure that the stator is connected to the grid. In the past, when a grid fault occurs in order to prevent a system, generators are separated from the grid regardless of the fault duration time. Recently, however, the grid connection standards(Grid Code)says that for the failures removed within a certain time, the generator remains operation without separating from the grid. This paper proposes a new flux tracking LVRT(Low-Voltage Ride Through) control based on system modeling equations. The validity of the proposed strategy has been demonstrated by computer simulations.

Simulation for Voltage Variations of a Grid-connected Wind Turbine Generation System by Simulink (Simulink에서 계통연계 풍력발전시스템의 전압변동 시뮬레이션)

  • Ahn Duck-Keun;Ro Kyoung-Soo
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.11
    • /
    • pp.589-595
    • /
    • 2004
  • This paper presents a modeling and simulation of a grid-connected wind turbine generation system with respect to wind variations, starting of large induction motor and three-phase fault in the system, and investigates voltage variations of the system for disturbances. It describes the modeling of the wind turbine system including the drive train model, induction generator model, and grid-interface model on MATLAB/Simulink. The simulation results show the variation of the generator torque, the generator rotor speed, the pitch angle, terminal voltage, system voltage, fault current, and real/reactive power output, etc. Case studies demonstrate that the pitch angle control is carried out to achieve maximum power extraction for wind speed variations, starting of a large induction motor causes a voltage sag due to a large starting current, and a fault on the system influences on the output of the wind turbine generator.

A Study on the Fault Current of Distribution System according to Connection of Wind Turbine Generation Grid-Connected Transformer (풍력발전 계통연계 변압기의 결선에 따른 배전계통의 고장전류에 관한 연구)

  • An, Hae-Joon;Ro, Kyoung-Soo;Kim, Hyun-Goo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.369-371
    • /
    • 2007
  • This study suggests a modeling of grid-connected wind turbine generation system that has induction generator, and aims to perform simulations for outputs by the variation of actual wind speed and for fault current of wind generation system by the transformer winding connection. This study is implemented by matlab&simulink. The simulation shall be performed by assuming single line to ground fault generated in the system. Generator power, generator rotor speed, generator terminal current and fault current shall be observed following the performance of simulation. The fault current change will be dealt through the simulation results for fault current of wind generation system following the grid-connected transformer winding connection and the simulation result by the transformer neutral ground method.

  • PDF

The Relationship between Wind Power Generation Grid-connected Transformer Winding Connection and Fault Current in MATLAB & SIMULINK (MATLAB & SIMULINK에서 풍력발전 계통연계 변압기결선과 고장전류와의 관계)

  • An, Hae-Joon;Kim, Hyun-Goo;Jang, Gil-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.307-309
    • /
    • 2008
  • This study suggests a modeling of grid-connected wind turbine generation system that has induction generator, and aims to perform simulations for outputs by the variation of actual wind speed and for fault current of wind generation system by the transformer winding connection. This study is implemented by matlab&simulink. The simulation shall be performed by assuming single line to ground fault generated in the system. Generator power, generator rotor speed, generator terminal current and fault current shall be observed following the performance of simulation. The fault current change will be dealt through the simulation results for fault current of wind generation system following the grid-connected transformer winding connection and the simulation result by the transformer neutral ground method.

  • PDF

Modeling and Control of Three-Phase Self-Excited Induction Generator Connected to Grid

  • Chandrasekaran, Natarajan;Karthikeyan, A
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.5
    • /
    • pp.265-272
    • /
    • 2017
  • This paper presents the dynamic modeling, analysis, and control of an AC/DC/AC-assisted, self-excited induction generator connected to the grid. The dynamic model includes wind turbine models with pitch control, gear boxes, self-excited induction generators, excitation capacitance, inductive load models, controlled six-pulse rectifiers, and novel state-space models of a grid-connected inverter. The system has been simulated to verify its capabilities of buildup voltage, stator flux response, stator phase current, electromagnetic torque, and magnetizing inductance variation during both the dynamic and steady states with a variable-speed prime mover. The complete setup of the above dynamic models was simulated using MATLAB/SIMULINK.

Analysis for the Inrush Current and Voltage Drop of Induction Generator by the Reactor Tap Change (리액터 탭 설정값에 따른 유도발전기의 돌입전류와 전압강하 분석)

  • Kim, Jong-Gyeum
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.8
    • /
    • pp.1202-1206
    • /
    • 2015
  • The induction generator has many advantages compared to the synchronous generator in terms of cost and maintenance. So squirrel cage induction generator has been recently supplied in small hydroelectric power station. Squirrel cage induction generator generates a high inrush current at the grid-connection. This high inrush current causes a voltage drop on the grid. In order to increase the supply of the induction generator, it is very important to find the method of reducing inrush current and voltage drop.