• Title/Summary/Keyword: Grid Generation

Search Result 1,130, Processing Time 0.036 seconds

Dual Current Control Scheme of a Grid-connected Inverter for Power Quality Improvement in Distributed Generation Systems (분산 전원 시스템의 전력품질 향상을 위한 계통연계 인버터의 이중 전류제어 기법)

  • Kim, Kyeong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.9
    • /
    • pp.33-41
    • /
    • 2015
  • To improve the power quality of distributed generation (DG) systems even in the presence of distorted grid condition, dual current control scheme of a grid-connected inverter is proposed. The proposed current control scheme is achieved by decomposing the inverter state equations into the fundamental and harmonic components. The derived models are employed to design dual current controllers. The conventional PI decoupling current controller is used in the fundamental model to control the main power flow in DG systems. At the same time, the predictive control is applied in the harmonic model to suppress undesired harmonic currents to zero quickly. To decompose the voltage inputs and state variables into the fundamental and harmonic components, the fourth order band pass filter (BPF) is designed in the discrete-time domain for a digital implementation. For experimental verification, 2kVA prototype of a grid-connected inverter has been constructed using digital signal processor (DSP) TMS320F28335. The effectiveness of the proposed strategy is demonstrated through comparative simulation and experimental results.

A Synthetical Study on Power Quality Measurement of Grid-Connected Wind Turbine Generating System based on the IEC International Standards (IEC 국제표준에 따른 계통연계형 풍력터빈 발전기계통의 전력품질 측정방법에 관한 심화연구)

  • Cho, Soo-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.2
    • /
    • pp.197-204
    • /
    • 2014
  • As more and more renewable energy resources are connected into the existing power system and their generation capacities are increasing, the need for regulations to minimize their impacts on the power grid is increasingly growing. And minimizing the irregular impacts made by grid-connected wind generators is important, since the output power generated by renewable energy resources can be changed easily by the weather condition and surrounding environment. In South Korea, an operational technical standard for distributed generation is used as a regulation, in which renewable energy sources including wind power are considered as a kind of distributed generation. In this paper, an international standard, IEC 61400-21, for the grid-connected wind turbine generating system(WTGS) will be introduced and a comprehensive and detailed review on the measuring methods of power quality characteristic parameters for WTGS based on the related IEC standards will be presented. Additionally, some prerequisites for applying the international standards to KEPCO system will be proposed.

DEVELOPMENT AND APPLICATION OF AUTOMATIC GRID GENERATION PROGRAM FOR 3-D WING USING JAVA APPLET (자바 애플릿을 이용한 3차원 날개 격자 자동 생성 프로그램의 개발과 적용)

  • Lee, J.H;Cho, H.S.;Kim, Byoung-Soo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.335-340
    • /
    • 2010
  • In this paper development of an automatic grid generation program for flow field calculation around 3D wing is described and its application is also introduced. The program is developed by using JAVA programming language and a graphic library, JOGL, and it can be usee either as an application program on a local computer or as a applet in the network environment. Currently, The program provides NACA series 4-digit airfoils as the wing cross-section shape and it offers a non-complicated GUI program which can easily generate structured grids for wings based on user's parameter input. Grid generated by the program can be selected as one of two types; O-type and C-type. In this research advancing layer method(ALM) augmented by elliptic smoothing method is used for the FLUENT. It is shown that by using current program high-quality structured grids around 3D wings can be easily generated, and typical grid generation results and flow solutions are demonstrated. Study on effects of geometric parameters on flow field is also tried by changing major wing parameters such as incidence angle type of wing-tip and sweepback angle.

  • PDF

The Tree-Dimensional Grid Generation of Arbitrary Body (임의물체 주위의 3차원 격자생성)

  • 맹주성;손병진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.189-196
    • /
    • 1990
  • In the present study, a new method of generating boundary-fitted coordinates systems controlled by control function is introduced. Application of the method to a three-dimensional simply-connected region is the demonstrated. The numerical grid generation has following feat ures, (a) The generated boundary fitted coordinates is well concentrated in near wall region and satisfied orthogonality, (b) The grid control function is fully automatic and well controlled in sharp convex boundary.

Review of Multifunctional Inverter Topologies and Control Schemes Used in Distributed Generation Systems

  • Teke, Ahmet;Latran, Mohammad Barghi
    • Journal of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.324-340
    • /
    • 2014
  • Recent developments in power electronics technology have spurred interest in the use of renewable energy sources as distributed generation (DG) generators. The key component in DG generators is a grid-connected inverter that serves as an effective interface between the renewable energy source and the utility grid. The multifunctional inverter (MFI) is special type of grid-connected inverter that has elicited much attention in recent years. MFIs not only generate power for DGs but also provide increased functionality through improved power quality and voltage and reactive power support; thus, the capability of the auxiliary service for the utility grid is improved. This paper presents a comprehensive review of the various MFI system configurations for single-phase (two-wire) and three-phase (three- or four-wire) systems and control strategies for the compensation of different power quality problems. The advances in practical applications and recent research on MFIs are presented through a review of nearly 200 papers.

DEVELOPMENT OF SPECIALIZED GRID GENERATION PROGRAM FOR MULTI-ELEMENT AIRFOIL AERODYNAMIC ANALYSIS (다중익형 공력 계산을 위한 특화 격자생성 프로그램 개발)

  • Nam, D.W.;Lee, Y.J.;Lee, J.Y.;Kim, B.S.
    • Journal of computational fluids engineering
    • /
    • v.21 no.4
    • /
    • pp.85-89
    • /
    • 2016
  • Wing is the most important part of aircraft which produces lift. In general when aircraft takes off or lands, high lift is required and additional devices are adopted in front and aft-side of wing, which constitute so-called multi element airfoils. The objective of this research is to develop a specialized grid generation program to help engineers in reducing human labor and eliminating time-consuming process for mesh regeneration by deforming the initially-given grid system with efficient deforming method. This paper describes briefly about the mesh deformation methods, and provides some results to verify the quality of deformed mesh and eventually correctness of current approach.

Study on the Simulation Model for applying PV Generation System to Micro-Grid based on Real Power System (실계통을 토대로한 마이크로그리드에 태양광 발전시스템을 적용하기 위한 시뮬레이션 모델에 관한 연구)

  • Lee, Kye-B.;Kim, Sung-Hyun;Son, Kwang M.;Jeon, In-Su
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.520-521
    • /
    • 2008
  • This paper deals with simulation model of the micro-grid system based on the real power system and applying PV generation system to micro-grid system. PSCAD/EMTDC simulation model is developed for use in studying the effect of the dynamics of PV generation to the micro-grid system. Simulation results show that the addition of the PV system improves the voltage profile of the area. Case studies also show that power quality at the load side is improved via voltage compensation at the load bus.

  • PDF

Modeling and Characteristic Analysis of Grid-connected Wind Turbine Generation System at MATLAB & SIMULINK (MATLAB & SIMULINK 에서 계통연계 풍력발전 시스템의 모델링과 특성해석)

  • An, Hae-Joon;Kim, Hyun-Goo;Jang, Gil-Soo;Ko, Seok-Whan;Jang, Moon-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1168-1169
    • /
    • 2008
  • This study suggests a modeling of grid-connected wind turbine generation systems and performs simulation according to increase/decrease of real wind speed. Matlab & Simulink implemented modeling of grid-connected wind turbine generation system. Terminal voltage, grid voltage, and active/reactive power shall be observed following the performance of simulation.

  • PDF

Computational Grid Generation for Navier-Stokes Design of Axial-Flow Compressors (축류압축기의 Navier-Stokes설계를 위한 계산격자점 생성기법 연구)

  • Chung H. T.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.38-42
    • /
    • 1997
  • A multiblock grid generation has been applied to a Navier-Stokes design procedure of a axial-flow compressors. A multiblock structure simplifies the creation of structured H-grids about complex turbomachinery geometries and facilitate the creation of a grid in the tip flow region. The numerical algorithm adopts the combination of the algebraic and elliptic method to create the internal grids efficiently and quickly. The input module is made of the results of the preliminary design, i.e., flow-path, aerodynamic conditions along the spanwise direction, and the blade profile data. The final grids generated from each module of the system are used as the preprocessor for the performance prediction of the sectional blade, the blade-stacking process and the three-dimensional flow simulation inside the blade passage. Application to the blade design of the LP compressor was demonstrated to be very reliable and practical in support of design activities. This customized system are coupled strongly with the design procedure of the turbomachinery cascades using the Navier-Stokes technique.

  • PDF

Grid Generation and flow Analysis around a Twin-skeg Container Ship (Twin-skeg형 컨테이너선 주위의 격자계 생성과 유동 해석)

  • 박일룡;김우전;반석호
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.1
    • /
    • pp.15-22
    • /
    • 2004
  • Twin-skeg type stern shapes are recently adopted for very large commercial ships. However it is difficult to apply a CFD system to a hull form having twin-skeg, since grid topology around a twin-skeg type stern is more complicated than that of a conventional single-screw ship, or of an open-shaft type twin-screw ship with center-skeg. In the present study a surface mesh generator and a multi-block field grid generation program have been developed for twin-skeg type stern. Furthermore, multi-block flow solvers are utilized for potential and viscous flow analysis around a twin-skeg type stern The present computational system is applied to a 15,000TEU container ship with twin-skeg to prove the applicability. Wave profiles and wake distribution are calculated using the developed flow analysis tools and the results are compared with towing tank measurements.