• Title/Summary/Keyword: Grid Dependency

Search Result 71, Processing Time 0.025 seconds

Hypersonic Chemical Nonequilibrium Flow Analysis with HLLE+ and LU-AF (HLLE+와 LU-AF를 이용한 극초음속 화학적 비평형 유동장 해석)

  • Park Soo-Hyung;Kwon Jang Hyuk
    • Journal of computational fluids engineering
    • /
    • v.5 no.2
    • /
    • pp.47-54
    • /
    • 2000
  • A robust Navier-Stokes code has been developed to efficiently predict hypersonic flows in chemical nonequilibrium. The HLLE+ flux discretization scheme is used to improve accuracy and robustness of hypersonic flow analysis. An efficient LU approximate factorization method is also used to solve the flow equations and species continuity equations in fully coupled fashion to implicitly treat stiff source terms of chemical reactions. The HLLE+ scheme shows lower grid dependency for the wall heating rates than other schemes. The developed code has been used to compute chemical nonequilibrium air flow through expanding hypersonic nozzle and past two and three dimensional blunt-nosed bodies. The results are in good agreement with existing numerical and experimental results.

  • PDF

DISTORTION OF FLOW MEASUREMENT BY VARIOUS INLET VELOCITY PROFILE OF ORIFICE FLOWMETER (오리피스 유량계의 입구 속도 분포에 따른 유량 계측 왜곡 특성)

  • Shin, B.S.;Kim, N.S.;Lee, S.K.;Bae, Yong-Beom;Keum, O.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.596-600
    • /
    • 2011
  • In this numerical analysis, the distortion of flow measurement by inlet velocity profile of orifice flowmeter was investigated. To validate the numerical method, the convergence was monitored and the grid dependency was also checked. realizable k-e model was selected and y+ was about 50 in this calculation. the results shows that the pressure at the pressure tab near pipe wall was changed by inclined inlet velocity profile and it leads to distorted a measurement values of flow through the orifice plate from -3.8% to 9%. Therefore, the fully developed inlet flow was required for accurate flow measurement by orifice flowmeter. If not, the orifice plate installed at wrong location should be re-installed or additional actions should be taken.

  • PDF

SIMULATION OF FREE SURFACE FLOW OVER TRAPEZOIDAL OBSTACLE WITH LATTICE BOLTZMANN METHOD (격자볼츠만법을 이용한 장애물 월반 자유수면 시뮬레이션)

  • Korkmaz, Emrah;Jung, Rho-Taek
    • Journal of computational fluids engineering
    • /
    • v.19 no.2
    • /
    • pp.79-85
    • /
    • 2014
  • An air-water free surface flow simulation by using the Lattice Boltzmann Method(LBM) has not been studied a lot compared with the done by the Navier-Stoke equation. This paper shows the LBM is as one of the application tools for the free surface movement over an obstacle. The Mezo scaled application tool has been developed with two dimensional and nine discretized velocity direction using conventional lattice Bhatnagar-Gross-Krook model. Boundary conditions of a halfway-based for solid wall and a kinematic-based for interface are adopted. A validation case with a trapezoidal shape bump to make a comparison between freesurface movements from computational results and experimental ones was described with grid size dependency.

Numerical Study on Effects of Geometrical Variables on Performance of A Centrifugal Compressor (원심압축기의 성능에 미치는 형상변수들의 영향에 대한 수치적 연구)

  • Kim, Jin-Hyuk;Kim, Kwang-Yong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.152-155
    • /
    • 2008
  • In this paper, the effect of modification of geometric variables on the performance of a centrifugal compressor blade has been studied numerically. The compressor contains six main blades and six splitter blades. Reynolds averaged Navier-Stokes (RANS) equations with shear stress turbulence (SST) model are discretized by finite volume approximations and solved on hexahedral grids for flow analysis. The design variables from blade lean angle at tip and middle of the blade have been modified. The isentropic blade efficiency and pressure have been predicted with the variation of the variables. Frozen rotor simulation is performed and adiabatic wall condition has been used. One of the six blades of compressor has been used for simulation to reduce the computational load. Optimum number of meshes has been selected by grid-dependency test, and this is used for all the simulations with changing geometric variables. The detailed flow analysis results have been reported as well as the effects of the variables.

  • PDF

Isolation Amplifier Circuits for Sensing and Feedback of the Inverter DC-Link Voltage (인버터의 직류링크 전압 검출 및 궤환을 위한 절연앰프 회로)

  • Kim, Kyung-Seo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.522-529
    • /
    • 2014
  • This study proposes an isolation amplifier circuit for the sensing and feedback of inverter DC-link voltage, which is inevitable for the precise control of inverter output voltage. The isolation amplifier consists of a pulse-width modulator and a pulse transformer with dual secondary windings. The accuracy of the proposed circuit depends on the precise matching of filter parameters in dual secondary circuits. The influences of parameter inaccuracy on the amplifier performances are analyzed. A modified circuit is proposed to reduce the dependency on filter parameters. The validity of the proposed method is verified through simulation and experiment.

Assessment of two-equation turbulent models in FLUENT for a turbulent heated pipe flow (열유속이 있는 난류 원관 유동에의 FLUENT의 2방정식 난류모델의 적용성 판단)

  • Moon C. M.;Baek S. G.;Park S. O.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.158-163
    • /
    • 2003
  • This paper assesses the two-equation turbulence models available in a commercial code, FLUENT, for heat transfer in a turbulent heated pipe flow. In case of flow under $Re_D=10,000$, Standard $\kappa-\epsilon$ and Realizable $\kappa-\epsilon$ models overpredict the Nusselt number about $20\%$ compared with the experimental correlation, and RNG $\kappa-\epsilon$ model overpredicts about $30\%$ when the two-layer zonal method is employed. When wall function method is adopted, all $\kappa-\epsilon$ models show better predictions. Standard $\kappa-\omega$ and SST $\kappa-\omega$ models have the dependency on the first grid point ($0.3). As Reynolds number becomes high, the predictions of all $\kappa-\epsilon$ and $\kappa-\omega$ models are in a good agreement with the experimental correlation.

  • PDF

Application of the Krylov Subspace Method to the Incompressible Navier-Stokes Equations (비압축성 Navier-Stokes 방정식에 대한 Krylov 부공간법의 적용)

  • Maeng, Joo-Sung;Choi, IL-Kon;Lim, Youn-Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.7
    • /
    • pp.907-915
    • /
    • 2000
  • The preconditioned Krylov subspace methods were applied to the incompressible Navier-Stoke's equations for convergence acceleration. Three of the Krylov subspace methods combined with the five of the preconditioners were tested to solve the lid-driven cavity flow problem. The MILU preconditioned CG method showed very fast and stable convergency. The combination of GMRES/MILU-CG solver for momentum and pressure correction equations was found less dependency on the number of the grid points among them. A guide line for stopping inner iterations for each equation is offered.

Analysis of Spatial Variability for Infiltration Rate of Field Soil -I. Variogram (토양(土壤)중 물의 침투속도(浸透速度)의 공간변이성(空間變異性) 분석(分析) -I. Variogram)

  • Park, Chang-Seo;Kim, Jai-Joung;Cho, Seong-Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.16 no.4
    • /
    • pp.305-310
    • /
    • 1983
  • Spatial variability of infiltration rates of 96 samples from Hwadong SiCL was studied by using geostatistical concepts. The measurement was made at the nodes of the regular grid consisting of 12 rows and 8 columns. Sample spacing within rows and columns was 3 and 2 meters, respectively. This study illustrated the use of variogram as a tool to identify the degree of dependency of the infiltration rate on the distance between pairs of measurements and how to take advantage of this dependency. Fractile diagram showed that the distribution of observation was approximately normal. The range of the variogram was about 7.4 meters. The minimum number of samples necessary to reproduce the results similar to the 96 measured values was 8 to 10. Coefficients of theoretical variogram function for computing kriged values and kriged varionces of nuogget effect, slope, and range were 0.444 cm/day, 0.003 cm/day, and 7.4 m, respectively.

  • PDF

Investigation of thermal hydraulic behavior of the High Temperature Test Facility's lower plenum via large eddy simulation

  • Hyeongi Moon ;Sujong Yoon;Mauricio Tano-Retamale ;Aaron Epiney ;Minseop Song;Jae-Ho Jeong
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3874-3897
    • /
    • 2023
  • A high-fidelity computational fluid dynamics (CFD) analysis was performed using the Large Eddy Simulation (LES) model for the lower plenum of the High-Temperature Test Facility (HTTF), a ¼ scale test facility of the modular high temperature gas-cooled reactor (MHTGR) managed by Oregon State University. In most next-generation nuclear reactors, thermal stress due to thermal striping is one of the risks to be curiously considered. This is also true for HTGRs, especially since the exhaust helium gas temperature is high. In order to evaluate these risks and performance, organizations in the United States led by the OECD NEA are conducting a thermal hydraulic code benchmark for HTGR, and the test facility used for this benchmark is HTTF. HTTF can perform experiments in both normal and accident situations and provide high-quality experimental data. However, it is difficult to provide sufficient data for benchmarking through experiments, and there is a problem with the reliability of CFD analysis results based on Reynolds-averaged Navier-Stokes to analyze thermal hydraulic behavior without verification. To solve this problem, high-fidelity 3-D CFD analysis was performed using the LES model for HTTF. It was also verified that the LES model can properly simulate this jet mixing phenomenon via a unit cell test that provides experimental information. As a result of CFD analysis, the lower the dependency of the sub-grid scale model, the closer to the actual analysis result. In the case of unit cell test CFD analysis and HTTF CFD analysis, the volume-averaged sub-grid scale model dependency was calculated to be 13.0% and 9.16%, respectively. As a result of HTTF analysis, quantitative data of the fluid inside the HTTF lower plenum was provided in this paper. As a result of qualitative analysis, the temperature was highest at the center of the lower plenum, while the temperature fluctuation was highest near the edge of the lower plenum wall. The power spectral density of temperature was analyzed via fast Fourier transform (FFT) for specific points on the center and side of the lower plenum. FFT results did not reveal specific frequency-dominant temperature fluctuations in the center part. It was confirmed that the temperature power spectral density (PSD) at the top increased from the center to the wake. The vortex was visualized using the well-known scalar Q-criterion, and as a result, the closer to the outlet duct, the greater the influence of the mainstream, so that the inflow jet vortex was dissipated and mixed at the top of the lower plenum. Additionally, FFT analysis was performed on the support structure near the corner of the lower plenum with large temperature fluctuations, and as a result, it was confirmed that the temperature fluctuation of the flow did not have a significant effect near the corner wall. In addition, the vortices generated from the lower plenum to the outlet duct were identified in this paper. It is considered that the quantitative and qualitative results presented in this paper will serve as reference data for the benchmark.

Development of a Parallel Cell-Based DSMC Method Using Unstructured Meshes (비정렬격자에서 병렬화된 격자중심 직접모사 기법 개발)

  • Kim, Hyeong-Sun;Kim, Min-Gyu;Gwon, O-Jun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.2
    • /
    • pp.1-11
    • /
    • 2002
  • In the present study, a parallel DSCM technique based on a cell-based data structure is developed for the efficient simulation of rarefied gas flows especially od PC clusters. Dynamic load balancing is archieved by decomposing the computational domain into several sub-domains and accounting for the number of particles and the number cells of each domain. Mesh adaptation algorithm is also applied to improve the resolution of the solution and to reduce the grid dependency. It was demonstrated that accurate solutions can be obtained after several levels of mesh adapation starting from a coars initial grid. The method was applied to a two-dimensioanal supersonic leading-edge flow and the axi-symmetric Rothe nozzle flow to validate the efficiency of the present method. It was found that the present method is a very effective tool for the efficient simulation of rarefied gas flow on PC-based parallel machines.