• 제목/요약/키워드: Grid Deformation Technique

검색결과 19건 처리시간 0.023초

비정렬 혼합 격자계에서 격자 변형 기법을 이용한 비정상 점성 유동 수치 모사 (NUMERICAL SIMULATION OF UNSTEADY VISCOUS FLOWS USING A GRID DEFORMATION TECHNIQUE ON HYBRID UNSTRUCTURED MESHES)

  • 이희동;정문승;권오준
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 춘계학술대회논문집
    • /
    • pp.252-268
    • /
    • 2009
  • In the present study, a grid deformation technique has been incorporated into the unsteady compressible and incompressible viscous flow solvers on unstructured hybrid meshes. An algebraic method based on the basis decomposition of normal edge vector was used for the deformation of viscous elements, and a ball-vertex spring analogy was adopted for inviscid elements among several spring analogy methods due to its robustness. The present method was validated by comparing the results obtained from the grid deformation and the rigid motion of entire grids. Fish swimming motion of an NACA0012 airfoil and flapping wing motion of a generic fighter were simulated to demonstrate the robustness of the present grid deformation technique.

  • PDF

비정렬 혼합 격자계에서 신속 격자 변형 기법을 이용한 비정상 점성 유동 해석 (NUMERICAL ANALYSIS OF UNSTEADY VISCOUS FLOWS USING A FAST GRID DEFORMATION TECHNIQUE ON HYBRID UNSTRUCTURED MESHES)

  • 이희동;정문승;권오준
    • 한국전산유체공학회지
    • /
    • 제14권3호
    • /
    • pp.33-48
    • /
    • 2009
  • In the present study, a fast grid deformation technique has been incorporated into the unsteady compressible and incompressible viscous flow solvers on unstructured hybrid meshes. An algebraic method based on the basis decomposition of normal edge vector was used for the deformation of viscous elements, and a ball-vertex spring analogy was adopted for inviscid elements among several spring analogy methods due to its robustness. The present method was validated by comparing the results obtained from the grid deformation and the rigid motion of entire grids. Fish swimming motion of an NACA0012 airfoil and flapping wing motion of a generic fighter were also simulated to demonstrate the robustness of the present grid deformation technique.

Radial Basis Function을 사용한 격자 변형에 대한 연구 (A STUDY ON A GRID DEFORMATION USING RADIAL BASIS FUNCTION)

  • 제소영;정성기;양영록;명노신;조태환
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 춘계학술대회논문집
    • /
    • pp.121-124
    • /
    • 2009
  • A moving mesh system is one of the critical parts in a computational fluid dynamics analysis. In this study, the RBF(Radial Basis Function) which shows better performance than hybrid meshes was developed to obtain the deformed grid. The RBF method can handle large mesh deformations caused by translations, rotations and deformations, both for 2D and 3D meshes. Another advantage of the method is that it can handle both structured and unstructured grids with ease. The method uses a volume spline technique to compute the deformation of block vertices and block edges, and deformed shape.

  • PDF

온도감응형 인광물질을 이용한 온도장 및 열변형 동시 계측 기법 개발 (Development of a multi-sensing technique for temperature and strain field of high-temperature using thermographic phosphors)

  • 임유진;염은섭
    • 한국가시화정보학회지
    • /
    • 제19권3호
    • /
    • pp.77-83
    • /
    • 2021
  • Solid oxide fuel cell (SOFC) operates at high temperatures in range of 600-800℃. Since layers of SOFC are composed of different substances, different thermal expansion in SOFC can result in defects under high temperature conditions. For understanding relation between temperature field and the thermal deformation in SOFC, temperature and strain field were simultaneously estimated using thermographic phosphors by optical measurement. Temperature fields were obtained by the life-time method, and the temperature differences of one specimen was checked with thermocouple. The thermal deformation was estimated by digital image correlation (DIC) method with extracted phosphorescence images. To investigate the deformation accuracy of DIC measurement, thermographic phosphors were coated with and without grid pattern on aluminum surface. Simultaneous measurement of temperature fields and thermal deformation were carried out for YSZ. This study will be helpful to multi-sensing of temperature field and thermal deformation on SOFC cells.

플래쉬 유무에 따른 비축대칭 정밀단조에 관한 연구 (A Study on Non-Axisymmetric Precision Forging with and without Flash)

  • 배원병;김영호;최재찬;이종헌;김동영
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1993년도 추계학술대회 논문집
    • /
    • pp.218-223
    • /
    • 1993
  • An UBET(Upper Bound Elemental Technique) program has been developed to analyze forging load, die-cavity filling and effective strain distribution for flashless forging. To analyze the process easily, it is suggested that the deformation is divided into two different parts. Those are axisymmetric part in corner and plane-strain part in lateral. The total power consumption is minimized through combination of two deformation parts by building block method, from which the upper-bound forging load, the flow pattern, the grid pattern, the veocity distribution and the effective strain are determined. To show the merit of flashless forging, the result of flashless and flash forging processes are compared through theory and experiment. Experiments have been carried out with plasticine billets at room temperature. The theoretical predictions of the forging load and the flow pattern are in good agreement with the experimental results.

  • PDF

가상 경계 방법을 이용한 유동 해석 기법에 관한 기초 연구 (The Basic Study on the Technique of Fluid Flow Analysis Using the Immersed Boundary Method)

  • 양승호;하만영;박일룡
    • 대한기계학회논문집B
    • /
    • 제28권6호
    • /
    • pp.619-627
    • /
    • 2004
  • In most industrial applications, the geometrical complexity is combined with the moving boundaries. These problems considerably increase the computational difficulties since they require, respectively, regeneration and deformation of the grid. As a result, engineering flow simulation is restricted. In order to solve this kind of problems the immersed boundary method was developed. In this study, the immersed boundary method is applied to the numerical simulation of stationary, rotating and oscillating cylinders in the 2-dimensional square cavity. No-slip velocity boundary conditions are given by imposing feedback forcing term to the momentum equation. Besides, this technique is used with a second-order accurate interpolation scheme in order to improve the accuracy of flow near the immersed boundaries. The governing equations for the mass and momentum using the immersed boundary method are discretized on the non-staggered grid by using the finite volume method. The results agree well with previous numerical and experimental results. This study presents the possibility of the immersed boundary method to apply to the complex flow experienced in the industrial applications. The usefulness of this method will be confirmed when we solve the complex geometries and moving bodies.

가상 경계 방법을 이용한 정지, 회전 및 진동하는 실린더의 유동 특성에 관한 연구 (The study of the characteristics of the stationary, rotating and oscillating cylinders using the immersed boundary method)

  • 양승호;하만영;박일룡
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.916-921
    • /
    • 2003
  • In most industrial applications, the geometrical complexity is combined with the moving boundaries. These problems considerably increase the computational difficulties since they require, respectively, regeneration and deformation of the grid. As a result, engineering flow simulation is restricted. In order to solve this kind of problems the immersed boundary method was developed. In this study, the immersed boundary method is applied to the numerical simulation of stationary, rotating and oscillating cylinders in the 2-dimensional square cavity. No-slip velocity boundary conditions are given by imposing feedback forcing term to the momentum equation. Besides, this technique is used with a second-order accurate interpolation scheme in order to improve the accuracy of flow near the immersed boundaries. The governing equations for the mass and momentum using the immersed boundary method are discretized on the non-staggered grid by using the finite volume method(FVM). This study presents the possibility of the immersed boundary method to apply to the complex flow experienced in the industrial applications.

  • PDF

마이크로 무아레 간섭계를 이용한 초정밀 변형 측정 (Nano-level High Sensitivity Measurement Using Microscopic Moiré Interferometry)

  • 주진원;김한준
    • 대한기계학회논문집A
    • /
    • 제32권2호
    • /
    • pp.186-193
    • /
    • 2008
  • [ $Moir{\acute{e}}$ ] interferometry is an optical method, providing whole field contour maps of in-plane displacements with high resolution. The demand for enhanced sensitivity in displacement measurements leads to the technique of microscopic $moir{\acute{e}}$ interferometry. The method is an extension of the $moir{\acute{e}}$ interferometry, and employs an optical microscope for the required spatial resolution. In this paper, the sensitivity of $moir{\acute{e}}$ interferometry is enhanced by an order of magnitude using an immersion interferometry and the optical/digital fringe multiplication(O/DFM) method. In fringe patterns, the contour interval represents the displacement of 52 nm per fringe order. In order to estimate the reliability and the applicability of the optical system implemented, the measurements of rigid body displacements of grating mold and the coefficient of thermal expansion(CTE) for an aluminium block are performed. The system developed is applied to the measurement of thermal deformation in a flip chip plastic ball grid array package.

자동차용 타원형 디프 드로잉 제품의 다이 반경에 관한 연구 (Study on the Influence of Die Corner Radius for Deep Drawing of Elliptical Product of Automobile)

  • 허영민;박동환;강성수
    • 소성∙가공
    • /
    • 제11권8호
    • /
    • pp.668-675
    • /
    • 2002
  • The circles deform into various shape during deformation, the major and minor axes of which indicate the direction of the major and minor principal strains. Likewise, the measured dimensions are used to determine the major and minor principal strain magnitudes. This circular grid technique of measuring strains can be used to diagnose the causes of necking and fracture in industrial practice and to investigate whether these defects were caused by material property variation, changes in lubrication, of incorrect press settings. In non-axisymmetric deep drawing, three modes of forming regimes are found: draw, stretch, plane strain. The stretch mode for non-axisymmetric deep drawing could be defined when the major and minor strains are positive. The draw mode could be defined when the major strain is positive and minor strain is negative, and plane strain mode could be defined when the major strain is positive and minor strain is zero. Through experiments the draw mode was shown on the wall and flange are one of a drawn cup, while the plane strain and the stretch mode were on the punch head and the punch corner area respectively, We observed that the punch load of elliptical deep drawing was decreased according to increase of die corner radius and the thickness deformation of minor side was more large than major side.

상하 컵형인 전후방압출공정에 관한 실험적 연구 (An Experimental Study in the Forward-Backward Extrusion for the Cup-Cup shape)

  • 김영득;한철호
    • 소성∙가공
    • /
    • 제3권3호
    • /
    • pp.291-301
    • /
    • 1994
  • In the simultaneous forward-backward extrusion the effects of some process variables including area reduction, stroke advance, materials(Al 2024 and commercial pure copper) on the extrusion load, plastic flow and height ratio of upper to lower extruded parts are experimentally investigated and analyzed. Grid-marking technique is employed to visualize the plastic flow. The influence of using split and original specimen on the extrusion load and height ratio is evaluated by experiments. Experimental results show that the plastic flow if oriented to the part of lower area reduction in the begining but it is usually variated during the overall process. The configurations of plastic deformation and plastic flow are dependent on the working materials and the lubricational conditions.

  • PDF