• Title/Summary/Keyword: Greenhouses

Search Result 631, Processing Time 0.041 seconds

Seedling Quality and Early Yield after Transplanting of Paprika Nursed under Light-emitting Diodes, Fluorescent Lamps and Natural Light (발광다이오드, 형광등 및 자연광 하에서 육묘된 파프리카의 묘소질 및 정식 후 초기 수량)

  • Lee, Jae Su;Lee, Hye In;Kim, Yong Hyeon
    • Journal of Bio-Environment Control
    • /
    • v.21 no.3
    • /
    • pp.220-227
    • /
    • 2012
  • This study was conducted to analyze the seeding quality of paprika and the growth and early yield after transplanting of paprika nursed under artificial light and natural light. In this study, blue LED, red LED, and white fluorescent lamps (FL) were used as artificial lighting sources. Photoperiod, average photosynthetic photon flux, air temperature, and relative humidity in a closed transplants production system (CTPS) were maintained at 16/8 h, $204{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, 26/$20^{\circ}C$, and 70%, respectively. Leaf length, leaf width, leaf area, top fresh weight and dry weight of paprika seedlings, and chlorophyll content in paprika leaves nursed under LED and fluorescent lamps for 21 days after experiment were significantly affected by light treatments. As compared with the control (white FL), leaf area of paprika grown under blue LED, red LED, and natural light was decreased by 63%, 63%, and 28%, respectively. Top dry weight of paprika grown under blue LED, red LED, and natural light was 64%, 50%, and 22%, respectively, compared with the control. Number of leaves on 18 days after transplanting showed with red LED, blue LED, and natural light by 86%, 84%, and 48%, respectively, compared with the control. On 114 days after transplanting, paprika nursed under blue LED and red LED had relatively short plant height. This result might be caused that the elongation of its internodes was suppressed by the illumination of sole blue or red light. Average number of fruits per plant harvested during 4 weeks after first harvest was 3.5 with red LED, 3.3 with blue LED, 1.0 with natural light, and 2.2 with control, respectively. Early yield of paprika nursed under red LED, blue LED, natural light, and control were 453 g/plant, 403 g/plant, 101 g/plant, and 273 g/plant, respectively. Larger fruit of 136 g was harvested with red LED treatment. Even though the early yield of paprika was greatly increased with artificial lighting, but total yield was almost similar as the harvest period after transplanting in greenhouses was lengthened. From the above results, we could understand that paprika nursed under white FL, blue LED, and red LED showed good growth after transplanting and was early harvested by a week as compared to the natural light. Therefore, the white FL, blue LED, and red LED as the artificial lighting sources in CTPS could be strategically used to enhance the seedling quality, to shorten the harvest time, and to increase the yield of paprika.

IPA Study of Landscape Potentiality of Agricultural and Fishery Heritages - A Focus on Cheongsando - (농어업유산의 경관 잠재력 파악을 위한 IPA 연구 - 청산도를 중심으로 -)

  • Kim, Dong-Chan;Choi, Woo-Young
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.42 no.4
    • /
    • pp.76-88
    • /
    • 2014
  • The purpose of this study is to derive landscape characteristic elements of agricultural and fishery heritage and to classify landscape characteristic elements of Cheongsando designated as Korean agricultural and fishery heritage No.1 as well as a Globally Important Agricultural Heritage System (GIAHS). Additionally, this study was conducted to suggest priority for conservation and management of Cheongsando by grasping differences between factors which visitors deem as important and satisfying. To implement this study, the literature review was written, an on-site survey to derive landscape characteristic elements of Cheongsando and a survey on importance and satisfaction of landscape characteristic elements of Cheongsando were conducted, and reliability analysis, descriptive statistical analysis and IPA analysis were performed using SPSS 20.0. The results are as follows: The analysis showed the factors requiring persistent efforts in the first quadrant are the rape flower garden, the sea, green barley field, flat stone paddy field, breakwater and lighthouse, abalone farms, stone houses, thatched houses, a coastal road, the slow road, Stonewall Walkway of Seongseo Village, and residents' agricultural behaviors. The analysis showed the factors needing intensive management strategies in the second quadrant are the surrounding mountain area, dock, Docheong Harbor, vessels, fish market, Doksari stone wall, garish-roofed farm villages, excursion school to a slow island, pension and cafe, bus stop, shade trees, Raw Fish Street, the beach and the filming site. Analysis indicated that the factors needing management control in the third quadrant are the pine grove, the beach, tidal mudflat, the garlic fields, vinyl greenhouses, grain drying yard, sea mustard drying yard, heritage center, Choboon, Dangri exorcism, the market place, residents' fishery behaviors, residents' industrial behaviors, residents' ordinary behaviors, visitors' behaviors that visiting the dock, visitors' behaviors that walking the slow road, visitors' behaviors that eating and shopping for specialties, visitors' behaviors that experiencing agriculture and fishery. Excessive effort factors in the fourth quadrant were not derived.

Effect of Heating by Infrared Heating Lamps on Growth of Strawberry and Heating Cost (적외선 난방등을 이용한 난방이 딸기의 생육과 난방비에 미치는 영향)

  • An, Jae Uk;An, Chul Geon;Hwang, Yeon Hyeon;Yoon, Hae Suk;Chang, Young Ho;Shon, Gil Man;Jeong, Byoung Ryong
    • Journal of Bio-Environment Control
    • /
    • v.22 no.4
    • /
    • pp.355-360
    • /
    • 2013
  • Diesel-burning air heater (air heater) and infrared heating lamp (infrared heater) were installed as auxiliary heaters in two single water-curtained plastic greenhouses with a set night temperature of $6^{\circ}C$ for cultivation of strawberry 'Seolhyang'. The average night air temperature was $6.6^{\circ}C$ in the infrared heater treatment and $7.1^{\circ}C$ in the air heater treatment. However, when the minimum outside temperature fell below $-10^{\circ}C$, the air heater had less internal temperature fluctuations. In contrast, the infrared heater had some cases of falling below the set temperature. The relative humidity was higher than 98% by the side-effect of water-curtain system regardless of the heating system. There was about $5^{\circ}C$ difference in leaf temperature between the turned-on and -off state of the infrared heater, and the efficacy of the infrared heater on leaf temperature was only limited to about 4 meters from the system. Peduncle length and plant height in the infrared heater tended to be greater than those in the air heater. There was, however, no statistically difference in leaf size and numbers of leaves, flowers on first cluster and branches. There was no difference in soluble solids content, fruit firmness, average fruit weight of the harvested fruits, and the yield. Comparing the heating costs, the air heater system took 622,662 won based on 543 L tax-free diesel, while the infrared heater system took 235,284 won by consuming 5,685 kWh of electricity, and 62.2% heating costs saving was achieved.

Restoration of endangered orchid species, Dendrobium moniliforme (L.) Sw. (Orchidaceae) in Korea (멸종위기 난과 식물 석곡의 복원)

  • Kim, Young-kee;Kang, Kyung-Won;Kim, Ki-Joong
    • Korean Journal of Plant Taxonomy
    • /
    • v.46 no.2
    • /
    • pp.256-266
    • /
    • 2016
  • A total of 13,000 individuals of Dendrobium moniliforme (L.) Sw. artificially propagated in laboratories and greenhouses were restored in their natural habitat of Bogildo Island, Wandogun, in the southern part of Korea in June of 2013. The growing conditions of the individuals were monitored for two years. The parental individuals for the restoration were obtained from a wild population in southern Korea, from which seeds were produced via artificial crossings. These seeds were germinated and cultivated in growing media and two-year-old plants were then grown in greenhouse beds. The genetic diversity among the propagated individuals was confirmed by examining DNA sequences of five regions of the chloroplast genome and the nuclear ITS region. The diversity values were as high as the average values of natural populations. All propagated individuals were transplanted into two different sites on Bogildo by research teams with local residents and national park rangers. After restoration, we counted and measured the surviving individuals, vegetative propagated stems, and growth rates in June of both 2014 and 2015. There was no human interference, and 97% of the individuals survived. The number of propagules increased by 227% in two years. In contrast, the average length of the stems decreased during the period. In addition, different survival and propagation rates were recorded depending on the host plants and the restored sites. The shaded sides of rock cliffs and the bark of Quercus salicina showed the best propagation rates, followed by the bark of Camellia japonica. A few individuals of D. moniliforme successfully flowered, pollinated, and fruited after restoration. Overall, our monitoring data over two years indicate that the restored individuals were well adapted and vigorously propagated at the restored sites. In order to prevent human disturbance of the restored sites, a CCTV monitoring system powered by a solar panel was installed after the restoration. In addition, a human surveillance system is operated by national park rangers with local residents.

Effects of Sowing Date on Agronomic Characteristics of Intermediate-erect Type Cowpea Grown in Plastic Greenhouse (반유한 직립형 동부의 하우스 파종기 이동에 따른 농업적 형질의 변화)

  • Kim, Dong-Kwan;Son, Dong-Mo;Lee, Kyung-Dong;Rim, Yo-Sup;Chung, Jung-Sung
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.59 no.4
    • /
    • pp.470-476
    • /
    • 2014
  • The purpose of this study was to investigate the effects of sowing time on ecological responses, growth, and yields of cowpeas grown in plastic greenhouses in a southern region of South Korea. Experiments were carried out in Naju, Jeonnam Province (Latitude $35^{\circ}$ 04' N, Longitude $126^{\circ}$ 54' E) during 2012 and 2013. The intermediate-erect type strains used in this study were Jeonnam1 and Jeonnam2. Sowing was performed between mid-March and mid-August at intervals of one month. The days from sowing to emergence was significantly higher for the mid-March sowing (12 days) but no significant differences were observed among the other sowing dates (3 to 4 days). The days from sowing to first flowering were shorter for sowing dates between mid-March and mid-July because sowing time was delayed and then were lengthened again at mid-August sowing; the days were longest at mid-March sowing (around 75 days) and were shortest at mid-July sowing (30 days). The days from first flowering to harvesting were short for the sowing dates between mid-March and mid-May (24 to 28 days) but were relatively long for subsequent sowing dates (35 to 38 days). Stem and peduncle lengths were relatively long for the mid-April and mid-August sowing dates. Main-stem node number was highest for the mid-June sowing. Branch number per plant was highest for the mid-March sowing. The mid-March sowing displayed the highest number of pods per plant as well as the heaviest seed weight. Yield per 10 ares was highest for the mid-March sown Jeonnam1 and the Jeonnam2 strains (340 and 367 kg respectively), and then tended to decrease due to subsequent delays in sowing.

Field Survey on Smart Greenhouse (스마트 온실의 현장조사 분석)

  • Lee, Jong Goo;Jeong, Young Kyun;Yun, Sung Wook;Choi, Man Kwon;Kim, Hyeon Tae;Yoon, Yong Cheol
    • Journal of Bio-Environment Control
    • /
    • v.27 no.2
    • /
    • pp.166-172
    • /
    • 2018
  • This study set out to conduct a field survey with smart greenhouse-based farms in seven types to figure out the actual state of smart greenhouses distributed across the nation before selecting a system to implement an optimal greenhouse environment and doing a research on higher productivity based on data related to crop growth, development, and environment. The findings show that the farms were close to an intelligent or advanced smart farm, given the main purposes of leading cases across the smart farm types found in the field. As for the age of farmers, those who were in their forties and sixties accounted for the biggest percentage, but those who were in their fifties or younger ran 21 farms that accounted for approximately 70.0%. The biggest number of farmers had a cultivation career of ten years or less. As for the greenhouse type, the 1-2W type accounted for 50.0%, and the multispan type accounted for 80.0% at 24 farms. As for crops they cultivated, only three farms cultivated flowers with the remaining farms growing only fruit vegetables, of which the tomato and paprika accounted for approximately 63.6%. As for control systems, approximately 77.4% (24 farms) used a domestic control system. As for the control method of a control system, three farms regulated temperature and humidity only with a control panel with the remaining farms adopting a digital control method to combine a panel with a computer. There were total nine environmental factors to measure and control including temperature. While all the surveyed farms measured temperature, the number of farms installing a ventilation or air flow fan or measuring the concentration of carbon dioxide was relatively small. As for a heating system, 46.7% of the farms used an electric boiler. In addition, hot water boilers, heat pumps, and lamp oil boilers were used. As for investment into a control system, there was a difference in the investment scale among the farms from 10 million won to 100 million won. As for difficulties with greenhouse management, the farmers complained about difficulties with using a smart phone and digital control system due to their old age and the utter absence of education and materials about smart greenhouse management. Those difficulties were followed by high fees paid to a consultant and system malfunction in the order.

Effects of Environment Friendly Agricultural Materials to Phytoseiulusc persimilis (Acari: Phytoseiidae) in the Laboratory (실내조건에서 친환경농자재가 포식성 칠레이리응애, Phytoseiulus persimilis(Acari: Phytoseiidae)에 미치는 영향)

  • Kang, Myong-Ki;Kang, Eun-Jin;Lee, Hee-Jin;Lee, Dae-Hong;Seok, Hee-Bong;Kim, Da-A;Gil, Mi-La;Seok, Mi-Ja;Yu, Yong-Man;Youn, Young-Nam
    • Korean journal of applied entomology
    • /
    • v.46 no.1 s.145
    • /
    • pp.87-95
    • /
    • 2007
  • Many kinds of environment friendly agricultural materials were used for the insect pest control and the control of plant diseases, furthermore they support the growth of crops in the greenhouses and the kindly environment friendly farming. Phytoseiulus persimilis might be used for control of two-spotted mites with environment friendly agricultural materials at the same time. For testing the toxicity of environment friendly agricultural materials against to p. persimilis, 61 environment friendly agricultural materials were selected by material contents and using methods. When environment friendly agricultural materials were directly sprayed on P. persimilis, IEFAM C, FEFAM A, EFAMSM A, D, EFAMPE A, EFAMCh B, EFAMME A, and EFAMMo C killed over 90%. However, there was no effects to FEFAM C, D, EFAMSM C, EFAML A, EFAMME C, E, H, J, EFAMMo G and I against P. persimilis. P. persimilis adults were not survived in vial for 48 hours after sprayed and dried with the environment friendly agricultural materials, fer examples, EFAMSM I, EFAMME A, EFAMMo A, C, and I. Otherwise, EFAMCh C and EFAMMo B were no effects to P. persimilis. Some environment friendly agricultural materials are of different qualities, and consequently test of their foxily have to necessary.

Characteristics of Temperature, Humidity and PPF Distribution by Covering Method and Environmental Control in Double Covering Greenhouse (이중피복 온실의 피복방법과 환경조절에 따른 온습도 및 광합성유효광량자속 분포 특성)

  • Lee, Hyun-Woo;Sim, Sang-Youn;Kim, Young-Shik
    • Journal of Bio-Environment Control
    • /
    • v.21 no.1
    • /
    • pp.1-11
    • /
    • 2012
  • The objective of the present study is to provide data needed to find double covering method to be able to improve environment of temperature, humidity and PPF in tomato greenhouse. The distribution charts of temperature, humidity and PPF which were measured in environment control conditions such as thermal insulation, air heating, roof ventilation and air fog cooling in conventional and air inflated double layers greenhouses were drawn and analysed. The thermal insulation effect of the air inflated greenhouse was the same as that of conventional greenhouse because the temperature between insulation curtain and roof covering material was equal in heating season. The ventilation effect of the air inflated greenhouse was superior to the conventional greenhouse. The temperature distribution in the fog cooled greenhouse was uniform and the cooling effect was about $3.5^{\circ}C$. The condensation on the roof covering surface could be controlled by removing the moisture between insulation curtain and roof covering by using humidifier. The PPF of conventional greenhouse was more decreased than the air inflated greenhouse as time went by because the transmittance of conventional greenhouse declined by dust collected on the inside plastic film owing to rolling up and down operation for ventilation.

Hydrogeochemistry and Statistical Analysis of Water Quality for Small Potable Water Supply System in Nonsan Area (논산지역 마을상수도 수질의 수리지화학 및 통계 분석)

  • Ko, Kyung-Seok;Ahn, Joo-Sung;Suk, Hee-Jun;Lee, Jin-Soo;Kim, Hyeong-Soo
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.6
    • /
    • pp.72-84
    • /
    • 2008
  • This study was carried out to provide proper management plans for small portable water supply system in the Nonsan area through water quality monitoring, hydrogeochemical investigation and multivariate statistical analyses. Nonsan area is a typical rural area heavily depending on small water supply system for portable usage. Geology of the area is composed of granite dominantly along with metasedimentary rocks, gneiss and volcanic rocks. The monitoring results of small portable water supply system showed that 13-21% of groundwaters have exceeded the groundwater standard for drinking water, which is 5 to 8 times higher than the results from the whole country survey (2.5% in average). The major components exceeding the standard limits are nitrate-nitrogen, turbidity, total coliform, bacteria, fluoride and arsenic. High nitrate contamination observed at southern and northern parts of the study area seems to be caused by cultivation practices such as greenhouses. Although Ca and $HCO_3$ are dominant species in groundwater, concentrations of Na, Cl and $NO_3$ have increased at the granitic area indicating anthropogenic contamination. The groundwaters are divided into 2 groups, granite and metasedimentary rock/gneiss areas, with the second principal component presenting anthropogenic pollution by cultivation and residence from the principal components analysis. The discriminant analysis, with an error of 5.56% between initial classification and prediction on geology, can explain more clearly the geochemical characteristics of groundwaters by geology than the principal components analysis. Based on the obtained results, it is considered that the multivariate statistical analysis can be used as an effective method to analyze the integrated hydrogeochemical characteristics and to clearly discriminate variations of the groundwater quality. The research results of small potable water supply system in the study area showed that the groundwater chemistry is determined by the mixed influence of land use, soil properties, and topography which are controlled by geology. To properly control and manage small water supply systems for central and local governments, it is recommended to construct a total database system for groundwater environment including geology, land use, and topography.

Environmental Effects on the Growth and Development of Tomato in Composting Greenhouse (퇴비발효온실의 환경조건이 토마토의 생육에 미치는 영향)

  • 양원모;홍지형;박금주;손보균
    • Journal of Bio-Environment Control
    • /
    • v.5 no.2
    • /
    • pp.202-209
    • /
    • 1996
  • The environment in composting greenhouse is very different with the traditional greenhouse by biothermal energy and $CO_2$ concentration. This experiment aimed to investigate the environmental effects on the growth and development of tomato grown at composting greenhouse. The room temperature is not different between two greenhouses because of heating and ventilation, but the soil temperature in composting greenhouse is about 7$^{\circ}C$ to 15$^{\circ}C$ higher than that of traditional greenhouse. The emission concentration of ammonia gas is the highest, 117.3ppm, at the 6th day starting the digest, and were gradually lowered from 7th day, 11 became 15.7ppm at the 16th day. The concentration of $CO_2$ in composting greenhouse were 250 to 2000ppm higher than that of traditional greenhouse for 4 months starting digest. The growth and development of tomato grown at composting greenhouse was better than that of traditional greenhouse. The yield in composting greenhouse was also better than that of traditional greenhouse. The sugar contents of tomato grown at composting greenhouse became about 1 $^{\circ}$Brix higher than that of traditional greenhouse.

  • PDF