• Title/Summary/Keyword: Greenhouse structure

Search Result 222, Processing Time 0.024 seconds

Greenhouse Environment and Growth of Green Pepper (Capsicum annuum L.) in Greenhouse Covered with CEM BIO Film (CEM BIO Film 피복시설의 환경특성과 풋고추 생육)

  • Chun, Hee;Kim, Kyung-Je;Kwon, Young-Sam;Kim, Hyun-Hwan;Lee, Si-Young
    • Journal of Bio-Environment Control
    • /
    • v.9 no.3
    • /
    • pp.161-165
    • /
    • 2000
  • Spectroradiometric light transmittance from 300 to 1,100nm in the greenhouse covered with the CEM BIO polyethylene film was greater than that in the greenhouse covered with polyethylene film (control). As a whole, solar radiation transmittance into greenhouse was a half level, due to shades caused by double layer covering, frame and equipment. Net radiation energy emitted throughout surface of the greenhouse covered with CEM BIO polyethylene film was 5,424.5W.m$^{-2}$ , which was lower by 2.9% as compared to that of the greenhouse covered with polyethylene film. Photosynthetically active radiation from 400 to 700nm of the greenhouse covered with CEM BIO polyethylene film was 3,861.2W.m$^{-2}$ , which was higher by 3.8% as compared to hat of the greenhouse covered with polyethylene film. Accumulated minimum air temperature from Oct. 7, 1997 to Oct. 16, 1997 of the greenhouse covered with CEM BIO polyethylene film was 100.5$^{\circ}C$, which was higher by 2.5$^{\circ}C$ as compared to that of the greenhouse covered with polyethylene film. As results, height, stem diameter, leaf count, leaf area, fresh weight and dry weight of green pepper plants and canopy production structure measured at 30 days after transplanting were enhanced. Mean fruit weight n the greenhouse covered with CEM BIO polyethylene film was 11.28 g and 1.25 g greater as compared to that in the greenhouse covered with polyethylene film, due to increased fruit diameter and flesh thickness. Percent marketable fruits produced in the greenhouse covered with CEM BIO polyethylene film were 96.1%, and was greater by 2.7% thant that of the greenhouse covered with polyethylnee film due to decreased infection, sterility, severe curve and twisted fruits. The green pepper yield of the greenhouse covered with CEM BIO polyethylene film from Nov. 19, 1997 to Feb. 3, 1998 was greater by 974 kg per hectare than that of the greenhouse covered with polyethylene film, but the total fruit had no difference.

  • PDF

Structural System Reliability Analysis of Semi-rigid Connected Frame - Focused on Plastic Greenhouse - (반강결 프레임 구조물의 시스템 신뢰성 해석 - 비닐하우스를 중심으로 -)

  • Lee, Sangik;Lee, Jonghyuk;Jeong, Youngjoon;Kim, Dongsu;Seo, Byunghun;Seo, Yejin;Choi, Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.5
    • /
    • pp.67-77
    • /
    • 2022
  • Recently, the trend in structural analysis and design is moving towards the development of reliable system. The reliability-based method defines various limit states related to usability and failure, thereby enabling multiple levels of design according to the importance of a structure. Meanwhile, an actual structure is composed of a set of several elements, and particularly, a frame type is composed of a system in which the members are connected each other. At this time, the actual connection between members is in a semi-rigid condition, not in complete rigid or hinged. This semi-rigid is found in several structures, especially in agricultural facilities designed with lightweight materials. In this study, a system reliability analysis technique for frame structure was established, and applied to an analysis of the semi-rigid connection. Various conditions of correlation were applied to reflect the connectivity between members, and through this, the limitations of existing structural analysis method and the behavioral characteristics of structure were analyzed. The failure probability of the frame member component and the overall structure system was significantly different in consideration of the semi-rigid connection. In addition, it was evaluated that the behavior of structure can be more accurately analyzed if the correlation according to the position of members in a system is further investigated.

Illumination Simulation of the Daylight using AGI S/W Program (AGI 프로그램을 활용한 자연광 조도시뮬레이션)

  • Lee, Boong-Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.7
    • /
    • pp.58-62
    • /
    • 2017
  • In this study, the design conditions for the Korean-style glass greenhouse structure has been reduced to achieve the most efficient use of natural light. The AGI program was simulated for the optimal conditions of daylight in a glass greenhouse. From the results of daylight simulation, the axis position of the glass greenhouse's roof was not an important factor in the daylight effects regarding illumination and uniformity. In summer, there were long periods of daylight and high illumination levels. The illumination value of daylighting increased with increasing glass transparency value, and the illumination value was greatest at 14:00 hours. At this time, the rate of light variation according to the glass transparency was 89 [lux/%]. In addition, the optimal design conditions for the glass greenhouse were established, which were a $30[^{\circ}]$ or $150[^{\circ}]$ installation angle and higher transmittance of glass.

Heat Loss Audit and Assessment of the Greenhouses Using Infrared Thermal Image Analysis (적외선 열화상 분석을 통한 온실의 열손실 진단 및 평가)

  • Moon, Jong-Pil;Yun, Nam-Kyu;Lee, Sung-Hyoun;Kim, Hak-Joo;Lee, Su-Jang;Kim, Young-Hwa
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.2
    • /
    • pp.67-73
    • /
    • 2010
  • Unlike Urban building, horticultural facilities has a lot of heat loss through plastic or glass covering material which could be much influential to growing plant and consuming energy for heating greenhouse. In many cases, heat loss from a break of cover, a gap of joint sealing, the entrance to greenhouse and windows for ventilation are the main factors considered in calculating the heating load for horticultural facilities. however the normal observation through human eye and digital camera could not recognize where the heat loss occurred. but the infrared thermal image camera with detecting thermal difference could be very effective for noticing heat loss by analyzing infrared thermal image. In this study, greenhouse structure, covering material, internal and external provisions for Horticultural facilities were surveyed in different sites and Infrared thermal camera shooting and image analysis were performed for auditing heat loss from cultivation facilities The results from this study were that unexpected heat loss had been noticed in 7 representative cases of greenhouse such as side wall covered with single or double plastic, and the joint of horizontal thermal curtain, roof without horizontal thermal curtain, entrance to greenhouse, windows for ventilation. the most important factors for keeping heat energy were whether the horizontal thermal curtain with multifold thermal material was installed or not. The internal or external covering using multifold thermal curtain proved to be the most effective ways to keep heat energy from losing through heat transmission, heat radiation. from inside to outside the horticultural facilities.

Solar Energy Utilization in a Greenhouse Bulk Curing and Drying System(I) (Greenhouse Bulk건조기에 의한 태양열이용에 관한 연구 (제I보))

  • 진정의;이승철;이상하
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.2 no.1
    • /
    • pp.61-67
    • /
    • 1980
  • The greenhouse hulk curing and drying system utilizing the direct solar energy was tested to see how much fuel could be saved for curing flue-cured tobacco at the Daegu Experiment Station, Korea Tobacco Research Institute (North latitute: 35$^{\circ}$49'), in 1979. The structure consists of transparent fiberglass exterior, polyurethan boards covered with galvanized iron as the heat absorbers and insulation boards, air duct in which the air is introduced to the furnace room of bulk curing barn, and gravel heat storage system. All exterior surface of heat absorbers, air duct, and gravels were coated with black paint. The air temperature and total radiation were 20.5 to 35.5$^{\circ}C$ and 1004.2 to 1436.2 cal/$\textrm{cm}^2$ during the 3 replicated curing tests, respectively. The greenhouse bulk curing and drying system was able to cut fuel consumption by 25 percent compared with the conventional bulk curing barn. The maximum temperatures for the top absorber and the inlet air of the system were 89$^{\circ}C$ and 64$^{\circ}C$, respectively, and the average temperature of inlet air was higher than that of conventional one by 18$^{\circ}C$.

  • PDF

Equimolar Carbon Dioxide Absorption by Ether Functionalized Imidazolium Ionic Liquids

  • Sharma, Pankaj;Park, Sang-Do;Park, Ki-Tae;Jeong, Soon-Kwan;Nam, Sung-Chan;Baek, Il-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.7
    • /
    • pp.2325-2332
    • /
    • 2012
  • A series $[C_3Omim]$[X] of imidazolium cation-based ILs, with ether functional group on the alkyl side-chain have been synthesized and structure of the materials were confirmed by various techniques like $^1H$, $^{13}C$ NMR spectroscopy, MS-ESI, FTIR spectroscopy and EA. More specifically, the influence of changing the anion with same cation is carried out. The absorption capacity of $CO_2$ for ILs were evaluated at 30 and $50^{\circ}C$ at ambient pressure (0-1.6 bar). Ether functionalized ILs shows significantly high absorption capacity for $CO_2$. In general, the $CO_2$ absorption capacity of ILs increased with a rise in pressure and decreased when temperature was raised. The obtained results showed that absorption capacity reached about 0.9 mol $CO_2$ per mol of IL at $30^{\circ}C$. The most probable mechanism of interaction of $CO_2$ with ILs were investigated using FTIR spectroscopy, $^{13}C$ NMR spectroscopy and result shows that the absorption of $CO_2$ in ether functionalized ILs is a chemical process. The $CO_2$ absorption results and detailed study indicates the predominance of 1:1 mechanism, where the $CO_2$ reacts with one IL to form a carbamic acid. The $CO_2$ absorption capacity of ILs for different anions follows the trend: $BF_4$ < DCA < $PF_6$ < TfO < $Tf_2N$. Moreover, the as-synthesized ILs is selective, thermally stable, long life operational and can be recycled at a temperature of $70^{\circ}C$ or under vacuum and can be used repeatedly.

Determinants of Korean Greenhouse Gas emissions revisited: Based on 16 Metropolitan City Data (우리나라 온실가스 배출량 결정요인 분석: 16개 광역지자체 자료를 바탕으로)

  • Taeyoung Jin
    • Environmental and Resource Economics Review
    • /
    • v.33 no.3
    • /
    • pp.241-261
    • /
    • 2024
  • This study analyzes the determinants of greenhouse gas emissions using data from 16 metropolitan municipalities in South Korea. The STIRPAT model, which probabilistically models environmental impacts, was employed for the analysis. Both homogeneous and heterogeneous panel analyses were utilized. Recognizing that results from homogeneous panel analysis could be distorted due to the characteristics of panel data, cross-sectional dependence and slope homogeneity tests were conducted. The tests indicated that it is appropriate to use estimates that consider cross-sectional dependence and reflect slope heterogeneity. Therefore, the results from heterogeneous panel analysis were presented as the main findings. The analysis identified income (per capita GRDP) and energy efficiency (energy intensity) as key determinants of greenhouse gas emissions. Conversely, population was found not to be a key factor, and the industrial structure of the regions (share of the service industry in value-added) was also identified as a potential determinant of greenhouse gas emissions. The hypothesis of the Environmental Kuznets Curve was not statistically significant, suggesting that improving energy efficiency, rather than income growth and economic development, would be the most effective policy tool for reducing greenhouse gases in each municipality.

A Study on the Improvement of Greenhouse Frame to Bear the Heavy Snow (적설하중 증가에 대비한 비닐하우스 골조 성능의 개선 연구)

  • Jung, Hyunjin;Yang, Sanghyun;Lee, Taehee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.2242-2248
    • /
    • 2015
  • The damages from greenhouses collapsing due to heavy snowfall in winter are increasing, and the current frames of greenhouse are required to be improved. This study was conducted to seek solutions to improve intensities of greenhouse frame to bear heavy snows. We investigated a structural safety of greenhouses by calculating axial force, bending moment and combined stress when snow load was increased up to 30% of the current standard ground snow load of the conventional greenhouse types (07-single type 3, 07-single type 18) in the three regions (Gyeongju, Sokcho, and Gangneung) where were most damaged by recent heavy snows. In addition, we determined what structural type was most efficiently bear snow loads by measuring the differences between the load bearing strength according to the changes of tube diameter and thickness or the rafter spacing of greenhouses circular pipe. MIDAS GEN program was used in the analysis. As a result, with the snow load increase of 30%, greenhouse in Gyongju was still safe, but in Sokcho was at a risk, and in Gangneung was possible to be collapsed even in the current snow load. Increased pipe diameter than increased pipe thickness was more efficient in terms of improved performance of greenhouse structure. Accordingly, it is suggested to revise standards of greenhouse to increase pipe diameter of rafter for minimizing damages by heavy snow.

Development of Design Technology of Korean Style Air-Inflated Double-Layer Plastic Greenhouse (한국형 공기주입 이중피복 플라스틱온실의 설계기술 개발)

  • Lee, Hyun-Woo;Sim, Sang-Youn;Nam, Hyo-Seok;Nam, Sang-Woon;Kim, Young-Shik
    • Journal of Bio-Environment Control
    • /
    • v.18 no.3
    • /
    • pp.185-191
    • /
    • 2009
  • The construction of experimental greenhouses, operating test, and analysis on variation of different environment factors were conducted to provide fundamental data for design of Korean style air-inflated double-layer plastic greenhouse. The development of technology of attaching plastic to the structure and fasteners to be able to keep airtight was required in order to maintain proper static pressure in air space of double layer coverings. The insulation effect of air inflated greenhouse was better than conventional type. The temperature of arch type roof was greater about $2^{\circ}C$ than peach type roof in air inflated greenhouse. It was recommended that the plastic should be attached at the edges without clearance length in order to ease installation and raise airtightness of double layer coverings. The transmittance of arch type roof was greater than peach type in air inflated one span greenhouse. The transmittance of air inflated greenhouse was greater than conventional type due to frame ratio and distance between double layers in three span greenhouse. The condensation occurred on conventional type greenhouse was more than air inflated type. It was required to examine for a long time in order to analyze it quantitatively.

Analysis of the Structural Safety of a Wind-Protecting Wall Using ANSYS/CFX (ANSYS와 CFX를 이용한 방풍벽의 구조 안전성 분석)

  • Yum Sung-Hyun;Kim Chul-Soo;Choi Young-Don
    • Journal of Bio-Environment Control
    • /
    • v.15 no.2
    • /
    • pp.138-148
    • /
    • 2006
  • This study was carried out to evaluate the structural safety fur both the attached wind-protecting wall in greenhouse and the detached one installed outside. Regarding the attached wind-protecting wall in greenhouse, the analysis was conducted by doing a fluid-structure coupled field analysis using both CFX-5.7 and ANSYS 8.1 and also under the design condition of an instantaneous maximum wind velocity of $30.9m{\cdot}s^{-1}$. Three kinds of the width ranged from 30 to 90cm were considered in this study. With regard to the detached wind-protecting wall, the structural saffty was analyzed under the pressure difference of 1,117 Pa which corresponded to a wind velocity of $50m{\cdot}s^{-1}$ and the analytical results were also compared with theoretical ones. The result showed that there was little difference in the distribution of velocity overall and total pressure on the lateral side according to the width of the attached wind-protecting wall, but greenhouse with wind-protecting widths of 30 to 60cm has been reinforced to the extent of about 11% when compared with the case of being without the wall. The result also showed that the detached wind-protecting wall with a main-column interval of 3m was not stable so that it was necessary for the detached wind-protecting wall to be adequately reinforced to secure structural stability. Finally, there was great difference between analytical results and theoretical studies. The difference meant that there was some possibility of including errors when a theoretical study was done in three dimensional structure.