• Title/Summary/Keyword: Greenhouse gas technology

Search Result 606, Processing Time 0.032 seconds

A Study on the Development of Equation from Calculation about Emissions of Greenhouse Gases in Glass Manufacturing Industries (유리 제조 산업분야의 온실가스 배출량 산정식 개발에 관한 연구(I))

  • Chung, Jin-Do;Ko, Byong-Su;Kim, Jang-Woo;Chae, Soo-Joh;Koo, Kyung-Wan;Hwang, Seung-Min
    • Journal of Environmental Science International
    • /
    • v.18 no.5
    • /
    • pp.509-515
    • /
    • 2009
  • The aim of this study is investigated greenhouse gas emissions of glass industry, and when calculates greenhouse gas emission, using formula(Tier 3) advising in IPCC(Intergovernmental Panel on Climate Change) and using self designed formula(Tier 3+) authors of this study. Studied to propose calculation formula that can compare these two calculation results and apply to domestic. Formula of Tier 3 calculated to theoretical composition of carbonate material, And Formula of Tier 3+ calculated on the basis of chemical substance formation table that get from glass manufacture company(The S company). As a result, Dolomite, Soda ash, Limestone, Industrial Barium carbonate is calculated value of Tier 3+ lower than value of Tier 3, And Industrial Potassium carbonate, Industrial Strontium carbonate was calculated value of Tier 3 lower than value of Tier 3. This study finding, formula of Tier 3+ has higher confidence than formula of Tier 3 when consider revision about purity of injection raw material. And hereafter, When calculate greenhouse gas emissions about nonmetallic mineral industry, use of Tier 3+ is considered that should be encouraged.

A Study of the Acquisition Plan for GHG Data using CAS500 (차세대 중형위성을 활용한 온실가스 관측 정보 획득 방안 연구)

  • Choi, Won Jun;Kim, Sangkyun
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.3
    • /
    • pp.1-7
    • /
    • 2017
  • Climate change adaptation must be prepared, because the pattern of climate change in Korea is higher than the global average. In particular, it is estimated that Korea's economic loss due to climate change will reach 2,800 trillion won, and at least 300 trillion won will be needed for adaptation to climate change(KEI, 2011). Accurate climate change forecasts and impact forecasts are essential for efficient use of enormous climate change adaptation costs. For this climate change prediction and impact analysis, it is necessary to grasp not only the global average concentration but also the inhomogeneity of the greenhouse gas concentration which appears in each region. In this study, we analyze the feasibility of developing a greenhouse gas observation satellite, which is a cause of climate change, and present a development plan for a low orbit environmental satellite by examining the current status of the operation of the greenhouse gas observation satellite. The GHG monitoring satellite is expected to expand the scope of environmental monitoring by water/soil/ecology in addition to climate change, along with weather/agriculture/soil observation satellites.

Simulation on CO2 capture process using an Aqueous MEA solution (MEA 흡수제를 이용한 이산화탄소 포집 공정 모사)

  • Woo, Dae-Sik;Nam, Sung-Chan;Jeong, Soon-Kwan;Yoon, Yeo-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.1
    • /
    • pp.431-438
    • /
    • 2012
  • The $CO_2$ capture technology using an aqueous amine solution is studied widely now. The entire process consists of an absorber to remove carbon dioxide selectively and a regenerator to regenerate absorbent and acquire pure carbon dioxide. Because there are the complicated design variables that affect performance of the process, it needs optimization and analysis through modeling to make a commercially reliable process. In this study, the decomposition method was proposed to consider convergence problem and sensitivity analysis was executed for the carbon dioxide capture process variables. Non-equilibrium model was used in the simulation to get more realistic results and we designed optimized process with more than 95% purity and 90% recovery.

Rhizoremdiation of Petroleum Hydrocarbon-contaminated Soils and Greenhouse Gas Emission Characteristics: A Review (유류오염토양 근권정화기술 동향 및 온실가스 배출 특성)

  • Seo, Yoonjoo;Cho, Kyung-Suk
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.2
    • /
    • pp.99-112
    • /
    • 2020
  • Rhizoremediation, based on the ecological synergism between plant and rhizosphere microorganisms, is an environmentally friendly method for the remediation of petroleum hydrocarbon-contaminated soils. In order to mitigate global climate change, it is necessary to minimize greenhouse gas emissions while cleaning-up contaminated soils. In rhizoremediation, the main factors affecting pollutant remediation efficiency and greenhouse gas emissions include not only pollutant and soil physicochemical properties, but also plant-microbe interactions, microbial activity, and addition of amendments. This review summarizes the development in rhizoremediation technology for purifying oil-contaminated soils. In addition, the key parameters and strategies required for rhizoremediation to mitigate climate change mediation are discussed.

Application of Environmental Management System Model for the Local Food Industry and the Analysis (로컬푸드산업의 환경경영시스템 모델 적용 분석)

  • Cho, Chang-Duk;Park, Dea-Woo
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.11 no.2
    • /
    • pp.233-247
    • /
    • 2016
  • Local food industry has been spreading all over the world. Korea is also actively applying and developing local food industry. However, relatively high distribution cost in Korean agricultural market is hindering its further growth. Distribution cost has close relation with shipping distance. Raised distribution cost brings major impacts not only on quality and price of products but also on greenhouse gas(carbon dioxide) emissions. Therefore, it is necessary to find a solution for inefficient distribution system of the local food industry to reduce overall cost and greenhouse gas. In this study, we present a location selection model for local food regional center using Analytic Hierarchy Process. The location of local food regional hub center is decided based on expert opinions on five factors: accessibility, quality, population, size of area, and shipping distance. The relative importance of the five factors has been concluded as follows: quality (0.430) ${\gg}$ population (0.262) ${\gg}$ travel distance (0.201) ${\gg}$ accessibility (0.075) ${\gg}$ and area (0.033). We apply and analyze the environmental management system model for Local food industry to develop the regional hub center site selection criteria and to analyze the effects of greenhouse gas emissions in the local food industry. This study, by applying and analyzing the environmental management system of the local food industry, is believed to be a valuable asset for managing greenhouse gas emission in the local food industry. Also, the data will be used for the autonomous local food industry's direct sales stall management. Eventually, this study will contribute so greatly to the local food industry's competitiveness that even large distribution companies will give way for the local food industry.

  • PDF

The Inventory Study for Greenhouse Gas Emission from Korean shipping Industries (국적 선박에서 배출되는 그린하우스가스의 인벤토리 연구)

  • Lee, Don-Chool;Lee, Seok-Hee;Lee, Kyoung-Woo
    • Journal of Korea Ship Safrty Technology Authority
    • /
    • s.27
    • /
    • pp.15-24
    • /
    • 2009
  • 최근 IMO에서는 온실가스 배출을 규제화 하고자 하는 동향이 있으며 조만간 선박에서 온실가스 배출의 규제가 실현될 것으로 예상된다. 선박에서 배출되는 온실가스는 CO$_2$가 대부분을 차지하고 있으며 세계경제상황에 따른 영향이 고려되지만 지속적으로 증가추세에 있는 CO$_2$를 감소시키기 위한 아국의 대처방안이 필요한 시점이다. 또한 향후 발효될 EEDI를 소개하고 결과적으로 GHG를 저감시키기 위한 방안인 선형개선, 폐열회수시스템, 친환경연료사용기관, SEMP 등에 관한 내용을 다루어 보았다. 이 보고서에서는 GHG를 비롯한 NOx, SOx 및 PM과 같은 유해배출물질을 Top Down방식으로 평가함으로써 선박에서 기인하는 대기오염물질 관련 국내정책 및 해운산업의 장기적인 발전전략에 유용하게 사용될 것으로 기대한다.

  • PDF

Recent Development of Carbon Dioxide Conversion Technology (이산화탄소 전환 기술의 현황)

  • Choi, Ji-Na;Chang, Tae-Sun;Kim, Beom-Sik
    • Clean Technology
    • /
    • v.18 no.3
    • /
    • pp.229-249
    • /
    • 2012
  • At present, global warming and depletion of fossil fuels have been one of the big issues which should be solved for sustainable development in the future. CCS (carbon capture and sequestration) technology as the post $CO_2$ reduction technology has been considered as a promising solution for global warming due to increased carbon emission. However, the environmental and ecological effects of CCS have drawn concerns. There are needs for noble post reduction technology. More recently, CCU (carbon capture and utilization) Technology, which emphasizes transforming carbon dioxide into value-added chemicals rather than storing it, has been attracted attentions in terms of preventing global warming and recycling the renewable carbon source. In this paper, various technologies developed for carbon dioxide conversion both in gas and liquid phase have been reviewed. For the thermochemical catalysis in gas phase, the development of the catalytic system which can be performed at mild condition and the separation and purification technology with low energy supply is required. For the photochemical conversion in liquid phase, efficient photosensitizers and photocatalysts should be developed, and the photoelectrochemical systems which can utilize solar and electric energy simultaneously are also in development for more efficient carbon dioxide conversion. The energy needed in CCU must be renewable or unutilized one. CCU will be a key connection technology between renewable energy and bio industry development.

A Study on the Estimation of the GHGs Emissions to the Reuse of De-ionized Water Production Process in Semiconductor Factory (반도체 생산용 초순수 제조공정의 농축수 재이용에 따른 온실가스 발생량 평가에 관한 연구)

  • Han, Jong-Min;Chung, Jin-Do;Kim, San
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.518-525
    • /
    • 2018
  • In the 21st century, human beings are becoming increasingly concerned about greenhouse gas emissions as the environment changes due to climate change become serious. The temperature of Korea has risen by approximately $1.5^{\circ}C$ from 1904 to 2000, and the climate is changing gradually to a subtropical climate. As a result, the frequency of floods and droughts increases, so that the water available to humans is decreasing every year, and the cost of using city water is rising every year. The reuse of wastewater that is normally abandoned is inevitable. This study examined the monthly data for 6 months of operation by installing a reuse system of concentrated wastewater (Re R/O System) that is generated during the process of manufacturing de-ionized water (DI-Water System) used in semiconductor processing. As a result of the survey, the city water supply saved approximately $2,767m^3$ per month. The average annual greenhouse gas emissions was $1,329.07kg-CO_2$ per month due to the electricity consumption of the water reuse system. On the other hand, because of the reduction in city water supply, the average monthly average of $918.64kg-CO_2$ was reduced, and the greenhouse gas emissions were increased to $410.43kg-CO_2$ per month. If it improves some processes in the water reuse system, the amount of greenhouse gas emissions can be reduced by an average of $254.41kg-CO_2$ per month.

The Comparative Study on the Environmental Impact Assessment of Construction Material through the Application of Carbon Reducing Element - Focused on Global Warming Potential of Concrete Products- (탄소저감요소를 적용한 건설재료의 환경영향평가 비교 연구 - 콘크리트 제품 생산단계에서의 지구온난화 영향을 중심으로-)

  • Cho, Su-Hyun;Chae, Chang-U
    • KIEAE Journal
    • /
    • v.15 no.1
    • /
    • pp.147-154
    • /
    • 2015
  • Environmental impact assessment techniques have been developed as a result of the worldwide efforts to reduce the environmental impact of global warming. By using the quantification method in the construction industry, it is now possible to manage the greenhouse gas is to systematically evaluate the impact on the environment over the entire construction process. In particular, the proportion of greenhouse gas emissions at the production stage of construction material occupied is high, and efforts are needed in the construction field. In this study, intended for concrete products for the construction materials, by using the LCA evaluation method, we compared the results of environmental impact assessment and carbon emissions of developing products that have been applied low-carbon technologies compared to existing products. As a result, by introducing a raw material of industrial waste, showed carbon reduction. Through a comparison of the carbon emission reduction effect of low-carbon technologies, it is intended to provide academic data for the evaluation of greenhouse gases in the construction sector and the development of low-carbon technologies of the future.

A quantitative analysis of greenhouse gases emissions from bottom pair trawl using a LCA method (전과정평가방법에 의한 쌍끌이 대형기선저인망의 온실가스 배출량 정량적 분석)

  • Yang, Yong-Su;Lee, Dong-Gil;Hwang, Bo-Kyu;Lee, Kyoung-Hoon;Lee, Jihoon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.51 no.1
    • /
    • pp.111-119
    • /
    • 2015
  • The negative factors of fishery in environmental aspect of view are Greenhouse gas emission problems by high usage of fossil fuel, destruction of underwater ecosystem by bottom trawls, reduction of resources by fishing and damage of ecosystem diversity. Especially, the Greenhouse gas emission from fisheries is an important issue due to Canc$\acute{u}$n meeting, Mexico in 1992 and Kyoto protocol in 2005. However, the investigation on the GHG emissions from Korean fisheries did not much carry out. Therefore, the quantitative analysis of GHG emissions from Korean fishery industry is needed as a first step to find a relevant way to reduce GHG emissions from fisheries. The purpose of this research is to investigate which degree of GHG emitted from fishery. Here, we calculated the GHG emission from Korean bottom pair trawl fishery using the LCA (Life Cycle Assessment) method. The system boundary and input parameters for each process level are defined for LCA analysis. The fuel use coefficient of the fishery is also calculated. The GHG emissions from the representative fishes caught by bottom pair trawl will be dealt with. Furthermore, the GHG emissions for the edible weight of fishes are calculated with consideration to the different consuming areas and slaughtering process also. The results will be helpful to understand the circumstances of GHG emissions from Korean fisheries.