• Title/Summary/Keyword: Greenhouse culture

Search Result 338, Processing Time 0.031 seconds

Characteristics of the Stored and Released Thermal Energy in Plastic Greenhouse with Underground Heat Exchange System (지중열교환(地中熱交換) 온실(溫室)의 축열(蓄熱) 및 방열(放熱) 특성(特性))

  • Lee, C.H.;Park, S.J.;Kim, Y.H.;Kim, C.S.;Rhee, J.Y.
    • Journal of Biosystems Engineering
    • /
    • v.19 no.3
    • /
    • pp.222-231
    • /
    • 1994
  • The efficient use of solar energy for greenhouse heating is one of the most obvious applications to save the heating energy for greenhouse culture. To increase the efficiency of solar energy utilization in plastic greenhouse, underground heat exchange system was installed. Characteristics of the stored and released thermal enery in plastic greenhouse with underground heat exchange system was analyzed. The average stored and released thermal energy in this system were 1,484 $kJ/m^2$ day and 555 $kJ/m^2$ day, respectively. The average coefficient of performance of heat exchange system was found to be 2.86. Also an attempt was made to predict the air temperature in plastic greenhouse. The agreement between the results of prediction and that of measurement was relatively good.

  • PDF

The Estimation of Transpiration Rate of Crops in Hydroponic Culture in the Plastic Greenhouse (열수지 해석에 의한 온실 수경재배 작물의 증산속도 추정에 관한 연구)

  • Nam, Sang-Woon;Kim, Moon-Ki
    • Solar Energy
    • /
    • v.10 no.3
    • /
    • pp.27-34
    • /
    • 1990
  • The main objective of this study was to find the relationship between transpiration rate and environmental factors for crops in hydroponic culture within plastic greenhouse by using the computer model developed from the heat balance around leaves of a crop. A computer model was developed and verified through comparison with the experimental results for lettuce in hydroponic culture in a polyethylene film house. The model may be extensively used for the water management and thermal environment study of crops in protected culture, if the supplemented studies for some crops would be accomplished.

  • PDF

Effects of Antagonistic Rhizobacteria on the Biological Control of Gray Mold in Greenhouse Grown Strawberry Plants (길항성 근원 세균이 딸기 시설재배에서 발생하는 잿빛곰팡이병의 생물학적 제어에 미치는 영향)

  • Cho, Jung-Il;Cho, Ja-Yong;Yang, Seung-Yul
    • Korean Journal of Organic Agriculture
    • /
    • v.13 no.2
    • /
    • pp.161-173
    • /
    • 2005
  • This study was carried out to clarify the effects of antifungal bacterial strains isolated from the greenhouse soil grown strawberry plants on the growth inhibition of plant pathogen, gray mold (Botrytis cinerea) infected in strawberry plants in Damyang and Jangheung districts. Antagonistic bacterial strains were isolated and investigated into the antagonistic activity against gray mold. Screened ten bacterial strains which strongly inhibited Botrytis cinerea were isolated from the greenhouse grown strawberry plants, and the best antifungal microorganism designated as SB 143 was finally selected. Antifungal bacterial strain SB 143 was identified to be the genus Bacillus sp. based on the morphological and biochemical characterization. Bacillus sp. SB 143 showed 59.4% of antifungal activity against Botrytis cinerea. By the bacterialization of culture broth and heated filtrates of culture broth, Bacillus sp. SB 143 showed 93.1% and 32.1% of antagonistic activity against Botrytis cinerea.

  • PDF

Development of a Numerical Model for Prediction of the Cooling Load of Nutrient Solution in Hydroponic Greenhouse (수경온실의 양액 냉각부하 예측모델 개발)

  • 남상운;김문기;손정익
    • Journal of Bio-Environment Control
    • /
    • v.2 no.2
    • /
    • pp.99-109
    • /
    • 1993
  • Cooling of nutrient solution is essential to improve the growth environment of crops in hydroponic culture during summer season in Korea. This study was carried out to provide fundamental data for development of the cooling system satisfying the required cooling load of nutrient solution in hydroponic greenhouse. A numerical model for prediction of the cooling load of nutrient solution in hydroponic greenhouse was developed, and the results by the model showed good agreements with those by experiments. Main factors effecting on cooling load were solar radiation and air temperature in weather data, and conductivity of planting board and area ratio of bed to floor in greenhouse parameters. Using the model developed, the design cooling load of nutrient solution in hydroponic greenhouse of 1,000$m^2$(300pyong) was predicted to be 95,000 kJ/hr in Suwon and the vicinity.

  • PDF

Infection Route of Bacterial Wilt of Tomato Caused by Ralstonia. solanacearum in Hydroponic Culture (수경재배에서 토마토풋마름병의 전염경로)

  • Nam, Ki-Woong;Moon, Byung-Woo;Kim, Young-Ho;Lee, Chang-Hee
    • Journal of Bio-Environment Control
    • /
    • v.18 no.2
    • /
    • pp.171-176
    • /
    • 2009
  • Hydroponic culture has been developed to control soilborn diseases, to increase yield and to enhance the quality of vegetable, The pathogen could be detected from infected plant materials, hydroponic tanks, culture solution and solid media of the severely infected greenhouse, The density of pathogen population was coincided with the severity of disease incidence, For example, 1,900cfu m$L^{-1}$ pf pathogens were counted from tomato plants sampled in a 20% diseased greenhouse. The pathogens may be introduced in the greenhouse through the contaminated soil surrounding the house and/or through the infected young seedlings grown on the nursery soil. Also, not detected to Ralstonia solanacearum from tomato seeds (House Momotaro, Bbaebbae, Ggoggo, and Minicarol cultivar) selling at a market.

Evapotranspirations of Lettuce and Cucumber by Cropping Systems in Greenhouse (시설재배 상추 및 오이의 재배방식별 증발산량)

  • 남상운;이남호;전우정;황한철;홍성구;허연정
    • Journal of Bio-Environment Control
    • /
    • v.6 no.3
    • /
    • pp.168-175
    • /
    • 1997
  • In greenhouse, data on evapotranspiration or water consumption is important for the rational water management, irrigation planning, thermal environment analysis, and watering automation. But little investigations have been attempted to make clear the characteristics of water consumption in greenhouse. In this paper, evapotransplrations of lettuce and cucumber by cropping systems were investigated. And the correlations among evapotranspiration, pan evaporation, solar radiation, mean air temperature, and minimum relative humidity were analyzed. Experimental cropping systems of lettuce were soil culture and NFT system. Those of cucumber were soil culture, perlite culture, and rockwool culture. Total water consumption of lettuce was 2.62$\ell$/plant in soil culture and 1.71$\ell$/plant in NFT system. That of cucumber was 45.22$\ell$/plant in soil culture, 27.45$\ell$/plant in rockwool culture and 29.06$\ell$/plant in perlite culture. Therefore total water consumption of soil culture showed higher than soilless culture.

  • PDF

Development of Thermal Storage System in Plastic Greenhouse(II) -Thermal performance of solar greenhouse system for hydroponic culture- (플라스틱 온실(溫室)의 열저장(熱貯藏) 시스템의 개발(開發)에 관(關)한 연구(硏究)(II) -수경재배용(水耕栽培用) 태양열(太陽熱) 온실(溫室) 시스템의 열적(熱的) 성능(性能)-)

  • Kim, Y.H.;Koh, H.K.;Kim, M.K.
    • Journal of Biosystems Engineering
    • /
    • v.15 no.2
    • /
    • pp.123-133
    • /
    • 1990
  • Thermal performance of a solar heating plastic greenhouse designed for a hydroponic system was studied. The system was constructed with the air-water heat exchanger and thermal storage tank that were combined with hydroponic water beds. Experiments were carried out to investigate the daily average heat stored and released in thermal storage tank, average solar energy collection efficiency, average coefficient of performance, average oil reduction factor of thermal storage system, and the heat transfer coefficient during the nighttime in plastic greenhouse. The results obtained in the present study are summarized as follows. 1. Daily average heat stored in thermal storage tank and released from the thermal storage tank was 1,259 and $797KJ/m^2$ day, respectively. 2. The average solar energy collection efficiency of thermal storage tank was 0.125 during the experiment period. And the average coefficient of performance of thermal storage system in plastic greenhouse was 3.6. 3. The average oil reduction factor of thermal storage system and the heat transfer coefficient during the nighttime in plastic greenhouse were found to be 0.52 and $4.3W/m^2\;hr\;^{\circ}C$, respectively.

  • PDF

Study on the performance analysis of long-term field test for protected horticulture heating system using solar thermal energy (태양열 시설원예 난방시스템 장기실증 성능분석 연구)

  • Lee Sang-Nam;Kang Yong-Heack;Yu Chang-Kyun;Kim Jin-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.403-407
    • /
    • 2005
  • Objective of the research is to demonstrate solar thermal space and ground heating system which is integrated to a greenhouse culture facility for reducing heating cost, increasing the value of product by environment control, and developing advanced culture technology by deploying solar thermal system. Field test for the demonstration was carried out in horticulture complex in Jeju Island. Medium scale solar hot water system was installed in a ground heating culture facility. Reliability and economic aspect of the system which was operated complementary with thermal storage and solar hot water generation were analyzed by investigating collector efficiency, operation performance, and control features. Short term day test on element performance and Long term test of the whole system were carried out. Optimum operating condition and its characteristics were closely investigated by changing the control condition based on the temperature difference which is the most important operating parameter. For establishing more reliable and optimal design data regarding system scale and operation condition, continuous operation and monitoring on the system need to be further carried out. However, it is expected that, in high-insolation areas where large-scale ground storage is adaptable, solar system demonstrated in the research could be economically competitive and promisingly disseminate over various application areas.

  • PDF

Micropropagation via Axillary Bud Induction of Eucalyptus pellita (액아유도에 의한 Eucalyptus pellita의 기내번식)

  • Moon, Heung-Kyu;Kim, Ji-Ah;Lee, Hyun-Shin;Kang, Ho-Duck
    • Journal of Plant Biotechnology
    • /
    • v.30 no.3
    • /
    • pp.269-273
    • /
    • 2003
  • In order to develop an efficient micropropagation protocal for Eucalyptus pellita, on in vitro culture system has been was established by inducing axillary buds from greenhouse stock materials. Among 6different media tested, DKW medium was the best ot induce bast induce both shoot proliferation and growth. Average number of proliferated shoots of 403per explant was obtained at the concentration of 0.1mg/LBA. Most of the stem materials excreted phenolic compounds at the proximal part of the explant and caused darking of the media. Therefore, it was necessary to transfer frequently to a fresh medium and/or to add activated charcoal at the concentration of 0.02%(w/v). Generally on vitro roots were formed easily on 1/2DKW medium with NAA treatment. All the explants rooted at the medium containing 0.2mg/L NAA and displayed vigorous root growth in vitro culture conditions. After transferred to an artificial soil mixture (peatmoss: vermiculrite: perlite, 1:1:1, v/v/v) in the greenhouse, most rooted plantlets survived well without any morphological abnormalities. The results show that the species can be micropropagated effectively by the application of axillary bud culture system.

Development of Semi-basement Type Greenhouse Model for Energy Saving

  • Kim, Seoung Hee;Joen, Jong Gil;Kwon, Jin Kyeong;Kim, Hyung Kweon
    • Journal of Biosystems Engineering
    • /
    • v.41 no.4
    • /
    • pp.328-336
    • /
    • 2016
  • Purpose: The heat culture areas of greenhouses have been continuously increasing. In the face of international oil price fluctuations, development of energy saving technologies is becoming essential. To save energy, auxiliary heat source and thermal insulation technologies are being developed, but they lack cost-efficiency. The present study was conducted to save energy by developing a conceptually new semi-basement type greenhouse. Methods: A semi-basement type greenhouse, was designed and constructed in the form of a three quarter greenhouse as a basic structure, which is an advantageous structure to inflow sunlight. To evaluate the performance of the developed greenhouse, a similar structured general greenhouse was installed as a control plot, and heating tests were conducted under the same crop growth conditions. Results: Although shadows appeared during the winter in the semi-basement type greenhouse due to the underground drop, the results of crop growth tests indicated that there were no differences in crop growth and development between the semi-basement type greenhouse and the control greenhouse, indicating that the shadows did not affect the crop up to the height of the crop growing point. The amount of fuel used for heating from January to March was almost the same between the two greenhouses for tests. The heating load coefficients of the experimental greenhouses were calculated as $3.1kcal/m^2{\cdot}^{\circ}C{\cdot}h$ for the semi-basement type greenhouse and $2.9kcal/m^2{\cdot}^{\circ}C{\cdot}h$ for the control greenhouse. Since the value is lower than the double layer PE (polyethylene) film greenhouse value of $3.5kcal/m^2{\cdot}^{\circ}C{\cdot}h$ from a previous study, Tthe semi-basement type greenhouse seemed to have energy saving effects. Conclusions: The semi-basement type greenhouse could be operated with the same fuel consumption as general greenhouses, even though its underground portion resulted in a larger volume, indicating positive effects on energy saving and space utilization. It was identified that the heat losses could be reduced by installing a thermal curtain of multi-layered materials for heat insulation inside the greenhouse for the cultivation of horticultural products by installing thermal curtain of multi-layered materials for heat insulation inside the greenhouse, it was identified that the heat losses could be reduced.