• Title/Summary/Keyword: Greenhouse Gas Reduction

Search Result 652, Processing Time 0.023 seconds

Economic Feasibility and Environmental Implications for the Use of Seaweed By-products as Feed for Ruminants (미이용 해조류를 활용한 축우용 사료화에 따른 경제성과 환경성 분석)

  • Nam Lee Kim;Il Ki Hwang;Sam Churl Kim;Young Ho Joo;Shin Kwon Kim
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.57 no.4
    • /
    • pp.336-341
    • /
    • 2024
  • In this study, the economic and environmental feasibility of seaweed by-products as livestock feed ingredients was evaluated. In the last three years (2021-2023), the estimated average annual production of domestic seaweed by-products, including processing residuals from sea mustard and kelp, was 210,000 tons. The economic feasibility analysis of using seaweed by-products as livestock feed indicated a net benefit of 482,237 KRW per ton. Additionally, substituting seaweed by-products at 0.25% 0.5%, 1%, and 2% in livestock compound feed generated net benefits of 6.5, 12.9, 25.9, and 51.7 billion KRW, respectively. The potential market value was analyzed from an environmental perspective by examining the greenhouse gas reduction potential of seaweed additives. By adding 2% laver, 2% sea mustard, and 0.25% sea mustard sporophyll to the feed, greenhouse gas emissions could be reduced by economic values estimated at 10.8, 11.4, and 15.6 billion KRW, respectively. The findings of this study suggest that the use of seaweed by-products livestock as feed ingredients can generate economic and environmental benefits.

The status and development of bilateral international cooperation in the forestry sector: the selection of priority partner countries for Korea's REDD+ programs

  • Kim, Ki Hyun;Lee, Bohwi;Kim, Sebin
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.4
    • /
    • pp.1083-1096
    • /
    • 2020
  • Global attention to the greenhouse gas emissions from deforestation and forest degradation is increasing. There is a growing recognition of reducing emission from deforestation and forest degradation plus (REDD+) as an effective way to reduce greenhouse gas emissions in the forestry sector. The Republic of Korea is implementing REDD+ pilot projects in four Southeast Asian countries as part of its efforts to reduce greenhouse gas emissions. This study evaluates countries with the potential to become priority partner countries for Korea's REDD+ programs, using the following five criteria: The first criterion is that a country should include the forest sector and REDD+ in its national plan for reducing greenhouse gas (GHG) emissions. The second and third criteria refer to an average forest coverage rate of over 44% and a forest change rate of over - 0.1%, among the countries with forest cover of more than 10 million ha. The fourth criterion is that the country should meet the Forest Reference Emission Level requirements, one of the four elements of the Warsaw REDD+ Framework. The fifth criterion is that the country should have bilateral relations with the Republic of Korea in forestry while at the same time be a partner country for cooperation on climate change as well as a REDD+ pilot country. Based on our evaluation, we conclude that the first priority countries are Indonesia, Cambodia, and Myanmar. The second priority countries include Brazil, Ecuador, and Peru. Finally, the third priority countries are Columbia, Congo, and Mozambique. This study suggests that for the selection of priority partner countries, Korean REDD+ programs should center on existing REDD+ pilot countries.

A Study on the Feasibility of Applying Solar Power Generation Systems to Merchant Ships for Energy Saving (에너지 절감을 위한 태양광 발전시스템의 선박 적용 타당성 연구)

  • Kim, Kyunghwan;Jeon, Hyeonmin;Kim, Seongwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.7
    • /
    • pp.1067-1073
    • /
    • 2021
  • Regulations to reduce greenhouse gas emissions from ships are gradually being strengthened. EEXI (Energy Efficiency Existing Index) has been introduced in existing ships, and various studies are aimed at achieving the greenhouse gas emission reduction target are currently underway. In this study, we proposed a method to reduce greenhouse gas emissions through reducing fuel oil consumption by applying a solar power generation system to a pure and truck carrier among existing ships engaged in international voyages. The proposed photovoltaic power generation system consists of a photovoltaic module, an energy storage system, and a power conversion device. To confirm applicability, the system was modeled through a power electronics program, and a simulation was performed. In addition, economic analysis was conducted to check the feasibility of application to real ships, and it was confirmed that significant results were derived in the economical aspect after about 11 years had elapsed.

Current Status of Standardization for Quality Control of Hydrogen Fuel in Hydrogen Refueling Stations for Fuel Cell Electric Vehicles (수소충전소 내 연료전지용 수소연료 품질 관리 및 표준화 동향)

  • KIM, DONGKYUM;LIM, JEONG SIK;LEE, JEONGSOON
    • Journal of Hydrogen and New Energy
    • /
    • v.33 no.4
    • /
    • pp.284-292
    • /
    • 2022
  • Hydrogen is promising a candidate for energy supporting the carbon neutrality policy for greenhouse gas reduction, which is being promoted in several countries, including Korea. Although challenging efforts-such as lowering the costs of green hydrogen production and fuel cells-remain, hydrogen fuel cell electric vehicles (FCEVs) are expected to play a significant role in the energy transition from fossil fuels to renewable energy. In line with this objective, the hydrogen FCEV working group in the International Organization for Standardization (ISO) compiled and revised international standards related to hydrogen refueling stations as of 2019. A well-established hydrogen quality management system based on the standard documents will increase the reliability of hydrogen charging stations and accelerate the use of FCEVs. In this study, among the published ISO standards and other references, the main requirements for managing charging stations and developing related techniques were summarized and explained. To respond preemptively to the growing FCEV market, a continuous hydrogen quality monitoring method suitable for use at hydrogen charging stations was proposed.

Development of Optimal Bus Dispatch Simulation for Greenhouse Gas Reduction

  • Jung, Sang Won;Cho, Kyu-Cheol
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.1
    • /
    • pp.141-148
    • /
    • 2022
  • Global climate change caused by greenhouse gases(GHG) is getting serious. To prevent this, countries around the world are regulating GHG emissions. Korea has decided to reduce GHG emissions by 37% compared to BAU (Business As Usual) by 2030. The transportation sector accounted for 18.58% of the domestic GHG emission, and roads accounted for 93.75% of the total. Public transportation is also included in the target of GHG reduction, and this study was conducted to reduce GHG emissions of bus public transportation, which can reduce GHG emissions while reducing the cost of road transportation. In this study, a simulation was conducted to predict the optimal GHG emission compared to the waiting time of passengers by adjusting the bus dispatch interval by implementing a greenhouse gas simulation model using Any Logic. If a more precise model is implemented in the future, it is expected that it will be used to reduce bus GHG emissions.

Effect of Power Output Reduction on the System Marginal Price and Green House Gas Emission in Coal-Fired Power Generation (석탄화력발전 출력감소가 계통한계가격 및 온실가스 배출량에 미치는 영향)

  • Lim, Jiyong;Yoo, Hoseon
    • Plant Journal
    • /
    • v.14 no.1
    • /
    • pp.47-51
    • /
    • 2018
  • This study analyzed the effect of power output reduction in coal fired power generation on the change of system marginal price and green house gas emissions. Analytical method was used for electricity market forecasting system used in korea state owned companies. Operating conditions of the power system was based on the the 7th Basic Plan for Electricity Demand and Supply. This as a reference, I analyzed change of system marginal price and green house gas emission by reduced power output in coal fired power generation. The results, if the maximum output was declined as 29 [%] to overall coal-fired power plant, system marginal price is reduced 12 [%p] compared to before and decreasing greenhouse gas emissions were 9,966 [kton]. And if the low efficiency coal fired power plant that accounted for 30 [%] in overall coal-fired power plant stopped by year, system marginal price is reduced 14 [%p] compared to before and decreasing greenhouse gas emissions were 12,874 [kton].

  • PDF

Characteristics of Greenhouse Gas Emissions with Different Combination Rates of Activated Rice Hull Biochar during Aerobic Digestion of Cow Manure (왕겨 활성 바이오차 혼합 비율에 따른 우분 호기소화 시 온실가스 발생 특성)

  • Ro, YeonHee;Chung, WooJin;Chung, SeokJoo;Jung, InHo;Na, HongSik;Kim, MinSoo;Shin, JoungDu
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.3
    • /
    • pp.222-227
    • /
    • 2020
  • BACKGROUND: Among the biomass conversion techniques of livestock manure, composting process is a method of decomposing organic matter through microorganisms, and converting it into fertilizer in soil. The aerobic composting process is capable of treating cow manure in large quantities, and produces greenhouse gas as CO2 and N2O, although it has economical benefit. By using the activated rice hull biochar, which is a porous material, it was intended to mitigate the greenhouse gas emissions, and to produce the compost of which quality was high. Objective of this experiment was to estimate CO2 and N2O emissions through composting process of cow manure with different cooperated biochar contents. METHODS AND RESULTS: The treatments of activated rice hull biochar were set at 0%, 5%, 10% and 15%, respectively, during composting cow manure. The CO2 emission in the control was 534.7 L kg-1, but was 385.5 L kg-1 at 15% activated rice hull biochar. Reduction efficiency of CO2 emission was estimated to be 28%. N2O emission was 0.28 L kg-1 in the control, but was 0.03 L min-1 at 15% of activated rice hull biochar, estimating about 89% reduction efficiency. CONCLUSION: Greenhouse gas emissions during the composting process of cow manure can be reduced by mixing with 15% of activated rice hull biochar for eco-friendly compost production.

Uncertainty-based Decision on Mitigation of Nitrous Oxide Emissions in Upland Soil (불확도 기반 밭토양 아산화질소 배출 저감 여부 판정)

  • Ju, Okjung;Kang, Namgoo;Lim, Gapjune
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.4
    • /
    • pp.307-316
    • /
    • 2019
  • In the agricultural sector, greenhouse gas emissions vary depending on the interaction of all ecosystem changes such as soil environment, weather environment, crop growth, and anthropogenic farming activities. Agricultural sector greenhouse gas emissions resulting from many of these interactions are highly variable. Uncertainty-based evaluation that defines the interval with confidence level of greenhouse gas emission and absorption is necessary to take account of the variance characteristics of individual emissions, but research on uncertainty evaluation method is insufficient. This study aims to decide on the effect of reducing N2O emissions from upland soils using an uncertainty-based approach. An uncertainty-based approach confirmed whether there was a difference between confidence intervals in the 5 different fertilizer treatment groups to reduce greenhouse gas emissions. Unlike the statistically significant test with three repetition averages, the uncertainty-based approach method estimated in this study is able to estimate the confidence interval considering the distribution characteristics of the emissions, such as the dispersion characteristics of individual emissions. Therefore, it is considered that the reliability of emissions can be improved by statistically testing the variance characteristics of emissions such as the uncertainty-based approach. It is hoped that the direction of the uncertainty-based approach for the effect of reducing greenhouse gas emissions in agriculture will be helpful in the future development of agricultural greenhouse gas emission reduction technology, adaptation to climate change, and further development of sustainable eco-social system.