• 제목/요약/키워드: Greenhouse Gas Mitigation

검색결과 125건 처리시간 0.026초

In vitro evaluation of nano zinc oxide (nZnO) on mitigation of gaseous emissions

  • Sarker, Niloy Chandra;Keomanivong, Faithe;Borhan, Md.;Rahman, Shafiqur;Swanson, Kendall
    • Journal of Animal Science and Technology
    • /
    • 제60권11호
    • /
    • pp.27.1-27.8
    • /
    • 2018
  • Background: Enteric methane ($CH_4$) accounts for about 70% of total $CH_4$ emissions from the ruminant animals. Researchers are exploring ways to mitigate enteric $CH_4$ emissions from ruminants. Recently, nano zinc oxide (nZnO) has shown potential in reducing $CH_4$ and hydrogen sulfide ($H_2S$) production from the liquid manure under anaerobic storage conditions. Four different levels of nZnO and two types of feed were mixed with rumen fluid to investigate the efficacy of nZnO in mitigating gaseous production. Methods: All experiments with four replicates were conducted in batches in 250 mL glass bottles paired with the ANKOM$^{RF}$ wireless gas production monitoring system. Gas production was monitored continuously for 72 h at a constant temperature of $39{\pm}1^{\circ}C$ in a water bath. Headspace gas samples were collected using gas-tight syringes from the Tedlar bags connected to the glass bottles and analyzed for greenhouse gases ($CH_4$ and carbon dioxide-$CO_2$) and $H_2S$ concentrations. $CH_4$ and $CO_2$ gas concentrations were analyzed using an SRI-8610 Gas Chromatograph and $H_2S$ concentrations were measured using a Jerome 631X meter. At the same time, substrate (i.e. mixed rumen fluid+ NP treatment+ feed composite) samples were collected from the glass bottles at the beginning and at the end of an experiment for bacterial counts, and volatile fatty acids (VFAs) analysis. Results: Compared to the control treatment the $H_2S$ and GHGs concentration reduction after 72 h of the tested nZnO levels varied between 4.89 to 53.65%. Additionally, 0.47 to 22.21% microbial population reduction was observed from the applied nZnO treatments. Application of nZnO at a rate of $1000{\mu}g\;g^{-1}$ have exhibited the highest amount of concentration reductions for all three gases and microbial population. Conclusion: Results suggest that both 500 and $1000{\mu}g\;g^{-1}$ nZnO application levels have the potential to reduce GHG and $H_2S$ concentrations.

환경 친화적인 간단관개를 통한 논에서의 온실가스 저감 (Greenhouse Gas Reduction from Paddy by Environmentally-Friendly Intermittent Irrigation: A Review)

  • 최중대;노만 우포프;김종건;이수인
    • 한국습지학회지
    • /
    • 제21권1호
    • /
    • pp.43-56
    • /
    • 2019
  • 관개 및 담수 논은 온실가스 배출에 기여를 하고 있으며 이는 기후에도 영향을 미친다. 관개 및 담수는 벼 생산을 위해 필요로 하는 수분의 공급과 안전성에도 영향을 미친다. 현재 벼 생산 방법(담수재배)은 여러 측면에서 부정적인 영향을 미치면서 시간이 지날수록 지속 가능성이 낮아 질 것이다. 이에 담수 논의 지역적 특성에 따라 지구온난화를 29% ~ 90%까지 줄이기 위해 SRI(system of rice intensification)와 AWD(alternate wetting and drying) 방법을 적용한 간단관개 방식이 검토되고 있으며, 점차 제한된 자원인 물을 절약하기 위한 방법으로 알려지고 있다. SRI/AWD 적용에 따른 긍정적인 측면으로는 논에서의 유출로 인한 수질악화를 줄이고 곡물에 비소를 줄일 수 있다는 것이다. SRI/AWD와 같이 간단관개 방법의 적용 및 확장을 위해서는 정밀 관개 조절을 할 수 있는 관개 인프라 구축에 대한 공공 및 민간에서의 비용적인 투자가 필요하며, 관리 능력 향상을 위해 물 관리 기관 및 농민의 노력이 요구된다. 산업분야에서 SRI/AWD와 함께 청정개발체제(CDM, clean-development mechanism) 하에서 탄소 배출권을 얻는 수단으로서의 민간 공공 협력은 간단관개 방식의 적용과 농촌지역 투자 및 발전에 기여할 수 있을 것이다. 또한, 청정개발체제 하에서 설계된 프로그램 또는 ODA(official development assistance) 프로젝트에 SRI/AWD가 포함된다면 기후변화 완화에 기여할 수 있을 것이고, UN의 지속 가능한 발전 목표(SDGs)를 달성하는 데 도움이 될 수 있을 것이다.

A Case Study to Estimate the Greenhouse-Gas Mitigation Potential on Rice Production System in Farming without Agricultural Chemicals

  • Lee, Jong-Sik;Ryu, Jong-Hee;Jeong, Hyun-Cheol;Choi, Eun-Jung;Kim, Gun-Yeob
    • 한국토양비료학회지
    • /
    • 제47권5호
    • /
    • pp.374-380
    • /
    • 2014
  • To estimate greenhouse gas (GHG) emission, the inventory of rice cultivation at the farming without agricultural chemicals was established from farmers in Gunsan, Jeonbuk province in 2011~2012. The objectives of this study were to calculate carbon footprint and analyse the major factor of GHGs. To do this, we carried out a sensitivity analysis using the analyzed main factors of GHGs and estimated the mitigation potential of GHGs. Also we suggested agricultural methods to reduce GHGs that can be appled by farmers at this region. At the farming system without agricultural chemicals, carbon footprint of rice production unit of 1 kg was 2.15 kg $CO_2.-eq.kg^{-1}$. Although the amount of carbon dioxide ($CO_2$) emission was the largest among GHGs, methane ($CH_4$) emission had the highest contribution to carbon footprint on rice production system when it was converted to carbon dioxide equivalent ($CO_2-eq.$) multiplied by the global warming potential (GWP). Main source of $CO_2$ emission in the rice farming system without agricultural chemicals was combustion of fossil fuels used by agricultural machinery. Most of the $CH_4$ was emitted during rice cultivation practice and its major emission factor was flooded paddy field in anaerobic condition. Also, most of the $N_2O$ was emitted from rice cultivation process. Major sources of the $N_2O$ emission was application of fertilizer such as compound fertilizer. As a result of sensitivity analysis in energy consumption, diesel had the highest sensitivity among the energy inputs. With the reduction of diesel consumption by 10%, it was estimated that $CO_2$ potential reduction was about 2.0%. With reducing application rate of compound fertilizer by 10%, the potential reduction was calculated that $CO_2$ and $N_2O$ could be reduced by 0.5% and 0.9%, respectively. At the condition of 10% reduction of silicate and compost, $CO_2$ and $CH_4$ could be reduced by 1.5% and 1.6%, respectively. With 8 days more drainage than the ordinary practice, $CH_4$ emission could be reduced by about 4.5%. Drainage and diesel consumption were the main sources having the largest effect on the GHG reduction at the farming system without agricultural chemicals. Based on the above results, we suggest that no-tillage and midsummer drainage could be a method to decrease GHG emissions from rice production system.

D시 생활폐기물 관리 방법과 온실가스 배출량과 감축량 산정 연구 (A Study of Estimation of Greenhouse Gas Emission and Reduction by Municipal Solid Waste (MSW) Management)

  • 윤현명;장윤;장용철
    • 한국폐기물자원순환학회지
    • /
    • 제35권7호
    • /
    • pp.606-615
    • /
    • 2018
  • Over the past two decades, the options for solid waste management have been changing from land disposal to recycling, waste-to-energy, and incineration due to growing attention for resource and energy recovery. In addition, the reduction of greenhouse gas (GHG) emission has become an issue of concern in the waste sector because such gases often released into the atmosphere during the waste management processes (e.g., biodegradation in landfills and combustion by incineration) can contribute to climate change. In this study, the emission and reduction rates of GHGs by the municipal solid waste (MSW) management options in D city have been studied for the years 1996-2016. The emissions and reduction rates were calculated according to the Intergovernmental Panel on Climate Change guidelines and the EU Prognos method, respectively. A dramatic decrease in the waste landfilled was observed between 1996 and 2004, after which its amount has been relatively constant. Waste recycling and incineration have been increased over the decades, leading to a peak in the GHG emissions from landfills of approximately $63,323tCO_2\;eq/yr$ in 2005, while the lowest value of $35,962tCO_2\;eq/yr$ was observed in 2016. In 2016, the estimated emission rate of GHGs from incineration was $59,199tCO_2\;eq/yr$. The reduction rate by material recycling was the highest ($-164,487tCO_2\;eq/yr$) in 2016, followed by the rates by heat recovery with incineration ($-59,242tCO_2\;eq/yr$) and landfill gas recovery ($-23,922tCO_2\;eq/yr$). Moreover, the cumulative GHG reduction rate between 1996 and 2016 was $-3.46MtCO_2\;eq$, implying a very positive impact on future $CO_2$ reduction achieved by waste recycling as well as heat recovery of incineration and landfill gas recovery. This study clearly demonstrates that improved MSW management systems are positive for GHGs reduction and energy savings. These results could help the waste management decision-makers supporting the MSW recycling and energy recovery policies as well as the climate change mitigation efforts at local government level.

기후학적 물수지를 적용한 기후변화에 따른 농업기상지표 변동예측의 불확실성 (Uncertainty Characteristics in Future Prediction of Agrometeorological Indicators using a Climatic Water Budget Approach)

  • 남원호;홍은미;최진용;조재필
    • 한국농공학회논문집
    • /
    • 제57권2호
    • /
    • pp.1-13
    • /
    • 2015
  • The Coupled Model Intercomparison Project Phase 5 (CMIP5), coordinated by the World Climate Research Programme in support of the Intergovernmental Panel on Climate Change (IPCC) AR5, is the most recent, provides projections of future climate change using various global climate models under four major greenhouse gas emission scenarios. There is a wide selection of climate models available to provide projections of future climate change. These provide for a wide range of possible outcomes when trying to inform managers about possible climate changes. Hence, future agrometeorological indicators estimation will be much impacted by which global climate model and climate change scenarios are used. Decision makers are increasingly expected to use climate information, but the uncertainties associated with global climate models pose substantial hurdles for agricultural resources planning. Although it is the most reasonable that quantifying of the future uncertainty using climate change scenarios, preliminary analysis using reasonable factors for selecting a subset for decision making are needed. In order to narrow the projections to a handful of models that could be used in a climate change impact study, we could provide effective information for selecting climate model and scenarios for climate change impact assessment using maximum/minimum temperature, precipitation, reference evapotranspiration, and moisture index of nine Representative Concentration Pathways (RCP) scenarios.

수정된 물관리보정인자를 적용한 경기도 논에서의 메탄 배출량 산정과 지도화 (Estimation and Mapping of Methane Emission from Rice Paddies in Gyunggi-do Using the Modified Water Management Scaling Factor)

  • 최성원;김학영;김연욱;강민석;김준
    • 한국농림기상학회지
    • /
    • 제18권4호
    • /
    • pp.320-326
    • /
    • 2016
  • 기후-스마트 농업의 관점에서 농업 부문의 온실가스 배출량을 감축하기 위해서는 그 양을 정확히 산정하는 것이 갈수록 중요해지고 있다. 농업 부문 배출량의 상당 부분을 차지하는 논에서 발생하는 메탄 배출량의 정확한 산정을 위해 2010년 농림어업총조사의 전수자료와 수정된 물관리보정인자 산정법 및 그 계산 프로그램을 이용하였다. 그 결과를 이해하기 쉽도록 ArcGIS 소프트웨어를 사용하여 지도화하였다. 이와 같은 방식으로 계산된 값을 현장의 실측 자료와 비교하였을 때 큰차이가 없었으며, 이러한 결과는 이 연구를 더욱 확대할 필요성이 충분함을 보여준다. 본 연구에서 제작된 행정구역별 메탄 배출량 지도를 통해 지역적으로 나타나는 차이를 명확히 인식할 수 있으며, 주요 조절 인자에 대한 분석은 실질적인 메탄 저감 대책을 마련하는 데 중요한 과학적 근거를 제공할 것으로 기대된다.

Post-2020에 연계한 온실가스 항목의 환경영향평가 개선 방안 (Improvement of EIA Associated with Greenhouse Gases Subject Matter for the Preparedness of Post-2020)

  • 홍상표
    • 환경영향평가
    • /
    • 제28권5호
    • /
    • pp.483-491
    • /
    • 2019
  • 파리 협약에 따른 post-2020에 대비하기 위한 환경영향평가(EIA : Environmental Impact Assessment) 측면에서의 온실가스 감축방안을 모색하였다. 2010~2019년 금강유역환경청의 EIA대상사업 중 26건의 환경영향평가서(EIS : Environmental Impact Statement)를 사례분석한 결과로, '온실가스 항목'은 대부분 형식적으로 작성된 것으로 분석되었다. 본 연구에서는 EIA시 '온실가스 항목'의 형식적 평가를 개선하기 위한 방안으로서, 1) EIA대상사업별 온실가스 배출량에 따른 배출부과금 할당, 2) "환경오염시설의 통합관리에 관한 법률"에 근거한 '허가배출기준 설정'에 '온실가스 항목'의 추가, 3)이해당사자들이 EIA대상 개발사업의 초기단계에 참여하는 거버넌스 확립으로 온실가스 감축 등을 제안하였고, 구체적인 내용을 논의하였다.

Private sector engagement in large scale solar power deployment in Sri Lanka: Role of green climate fund

  • Liyanage, Namal
    • 한국태양광발전학회지
    • /
    • 제6권1호
    • /
    • pp.21-34
    • /
    • 2020
  • Sri Lanka has strongly understood the importance of mitigation of climate change and various measures have been taken. To tackle the climate change, after ratifying Paris Agreement, Sri Lanka has pledged to reduce her greenhouse gas emission in the energy sector by 20% (16% unconditional and 4% conditional) by 2030 based on the BAU scenario. Simultaneously, the government introduced its new energy policy and strategies in 2019 with a vision of achieving carbon neutrality by 2050. This paper survey related key government documents, policies, reports, and academic articles to investigate opportunities for the private sector to invest large scale solar power deployment (10 MW or above) and to get support from climate finance under article 6 of the Paris Agreement. It has found, growing concern on the environment, energy security issues and increase import expenses for fossil fuels are the main influencing factors to move renewable sources. Further, government investment and FDI both have gradually decreased in the energy sector. Therefore, an alternative financing mechanism is needed. Although the private sector allowed investing in the energy sector since 1996 with the introduction of IPP (Independent Power Producers), it could not make considerable progress on involving large scale solar utility projects. This has revealed government policy is not aligning with the long term generation plan of the electricity sector. The study has also found, it needs more strategic road map, coordination with different institutions, monitoring system to enhance large scale solar contribution.

신재생에너지 사업의 청정개발체제 사전 타당성 평가 프로그램 개발 (Development of Pre-Validation Program of Clean Development Mechanism for Renewable Energy)

  • 박종배;정윤원;이우남;이상형;원성희;허보연;오대균;하경애
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 A
    • /
    • pp.420-421
    • /
    • 2006
  • The cost-effective reduction of greenhouse gas(GHG) emission to avert the most severe impacts of climate change remains one of the widely accepted priorities for global action. In order to facilitate cost-effective abatement strategies, the Kyoto Protocol introduced three mechanisms, or flexible instruments, the Emissions Trading(ET), the Joint Implementation(JI) and the Clean Development Mechanism(CDM). The CDM enables Annex I countries to the Kyoto Protocol to partially meet cost-effectively their emission reduction commitments by undertaking GHG mitigation Projects in developing countries, which do not have any GHG abatement obligations and where the emission reductions are cheaper. One of the major barriers hampering the wide spread implementation of CDM is the high transaction costs associated with the initial identification of promising CDM projects. This paper presents development of a pre-validation program of CDM. The developed program may provide a useful aid to potential investors and project developers as a supportive pre-evaluation tool, and may become an effective tool for the promotion of renewable energy and fuel switching projects.

  • PDF

The Effects of Drought on Forest and Forecast of Drought by Climate Change in Gangwon Region

  • Chae, Hee-Mun;Lee, Sang-Sin;Um, Gi-Jeung
    • Journal of Forest and Environmental Science
    • /
    • 제28권2호
    • /
    • pp.97-105
    • /
    • 2012
  • A Gangwon region consisting of over 80% of forest area has industries that have been developed by utilizing its clean region image. However, the recent climate change has increased the forest disease & insect pest as well as the forest fire and the major cause is known to be the increase in the frequency of a drought occurrence. From the aspect of climate change, it can be said that drought and forest are important in every aspect of the adaptation and mitigation of climate change measure as they increase forest disease & insect pest that leads to desolation of usable forest resource. In addition, the increase of forest fire reduces resources that can absorb greenhouse gas, which leads to increase in green house emission. The purpose of this study is to provide a motive for concentrating administrative power for protecting forest in a Gangwon region by selecting a drought management needed local government through a drought forecast according to the climate change scenario of a Gangwon region.