• Title/Summary/Keyword: Green technologies

Search Result 401, Processing Time 0.035 seconds

Impact of experience on government policy toward acceptance of Hydrogen fuel cell vehicles (정부정책에 대한 경험이 수소 연료전지 자동차의 수용에 미치는 영향)

  • Gang, Min-Jeong;Park, Hui-Jun
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 2010.04a
    • /
    • pp.465-470
    • /
    • 2010
  • Korea government declared that "low carbon, green growth" through green technologies and clean energy to be the new national vision for the next 60 years(President's Liberation Day speech on Aug. 15, 2008). And succeeding "Green New Deal" plan involves nine core projects including energy saving, recycling, clean energy development. It is because hydrogen fuel cell vehicles, using electricity from chemical reaction of hydrogen and oxygen, let out water which is a by-product of such chemical reaction instead of emitting harmful particulate and gases such as NOX, SOX and CO2 that hydrogen fuel cell vehicles and its technology are drawing public attention as one of the sensible solutions in accomplishing "low carbon, green growth" agenda. Nevertheless There are many chances that let the people have a practical experience of hydrogen fuel cell vehicles. Sometimes new products, including hydrogen fuel cell vehicles, made by advanced technology can not penetrate through the market when it faces public skepticism that is stimulated from lack of knowledge and experience. That is the reason why not only cost benefit analyses and scientific risk assessments but also public acceptance studies toward hydrogen fuel cell vehicles have to be performed [Schulte, 2004]. This research address a need for comprehensive study on factors influencing public acceptance of hydrogen fuel cell car, specifically focusing on impacts of personal experience related to governmental science and technology policy toward public acceptance.

  • PDF

Forecasting of Green Technologies on Intelligent Transportation System using Patent Analysis (특허 분석을 활용한 ITS 녹색 기술 예측)

  • Lee, Joo-Hyeon;Lee, Chul-Ung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.2
    • /
    • pp.233-241
    • /
    • 2014
  • In this paper, it predicts green technology in the future with "Co-word" which is patent analysis, "technology road-map, life cycle graph of patent activation and trend analysis. Analysis result shows that it would help environment preservation because development of ITS green technology makes carbon emission effectiveness and ITS green technology is especially expected to develop in fuel saving field. In addition, fuel saving field is predicted to be advance more practically technology field with convergence with IT.

A Comparative Analysis of Rooftop Greening in Korea and Japan (한국과 일본의 옥상녹화 동향분석 및 비교)

  • Jang, Seong-Wan;Lee, Dong-Kun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.11 no.6
    • /
    • pp.143-152
    • /
    • 2008
  • A comparative analysis of rooftop greening in Korea and Japan was carried out to understand current status of rooftop greening creation and technology and to give directions to frame a policy or plan on rooftop greening in Korea. Besides literature studies, questionnaire survey to Korean and Japanese experts on rooftop greening were done. As results, the annual creation areas, the types and the scales of rooftop greening in Seoul and Tokyo until 2007 were analysed and the satisfaction on the creation areas and technologies, the preference types, the present levels of and the most important parts among policies (support systems), technologies (creation methods), materials, maintenances and user programs for the development or expansion of rooftop greening in Korea and Japan were compared. The creation areas of rooftop greening in Seoul until 2007 was around 15% in Tokyo but the increasing rate of those in Seoul was faster than in Tokyo. Korean needs for the improvement on the rooftop greening systems and technologies were higher than Japanese, but both desired the expansion of rooftop greening areas in both countries. Korean preferred semi-intensive rooftop greening system but Japanese preferred intensive system. Korean and Japanese rooftop greening experts preferred policies (support systems) and technologies (creation methods) for the most important part for the development or expansion of rooftop greening in both countries.

A Basic Study on the Method of Building Energy Management Based on Digital Space Modeling and Ubiquitous IT Technology (디지털 공간모델링 기법과 유비쿼터스 IT 기술을 접목한 빌딩 에너지 관리방법에 관한 기초연구)

  • Park, Yong-Jun;Park, Nam-Hee;Choi, Jin-Won
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2009.04a
    • /
    • pp.181-186
    • /
    • 2009
  • Recently, the consuming efficiency of energy and natural resources has been a hot issue because of the continuous increasing of energy consumption and soaring of international oil prices. We tried to seek an action plan for the government's new paradigm 'Low-Carbon, Green Growth' by consuming energy efficiently and improving in energy management based on ubiquitous IT technologies. In this study, the library survey method is adopted for this study and IP-USN(internet protocol based ubiquitous sensor network) is considered as a core technology among various ubiquitous IT technologies. The purpose of this study is to deliver a method of energy management through integrating the context information gathered from sensors with digital space models and visualizing them together. The details are to survey the technologies of digital space modeling, USN based monitoring, building energy management and to integrate these technologies all together. This study will contribute to the enhancement of efficient building energy management by grasping the accurate situation of energy consuming in the building in realtime and minimizing unnecessary energy wastes.

  • PDF

LTCC and LTCC-M Technologies for Multichip Module (Multichip module 개발을 위한 LTCC 밀 LTCC-M 기술)

  • 박성대;강현규;박윤휘;문제도
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.6 no.3
    • /
    • pp.25-35
    • /
    • 1999
  • LTCC (Low Temperature Cofired Ceramic) or LTCC-M (Low Temperature Cofired ceramic on Metal) technology is one of MCM-C (Multichip Module on Ceramic) technologies and becomes to be widely used in consumer, RF and automotive electronics. As green sheets for LTCC are cofired below $1000^{\circ}C$ in comparison with those for HTCC (High Temperature Cofired Ceramic), high conductivity metal traces such as gold, silver and copper can be used. The dimensional stability in LTCC-M technology enables embedded passives to be integrated inside modules, which enhances the electrical performance and increases the reliability of the modules. Coefficient of thermal expansion and dielectric constant can be controlled by changing composition and heating profile for cofiring. In this technical review, LTCC and LTCC-M technologies are introduced and advantages of those technologies are explained.

  • PDF

Aspects Of Architectural Design Using BIM Technologies

  • Tikhonova, Oleksandra;Selikhova, Yana;Donenko, Vasyl;Kulik, Mykhailo;Frolov, Denys;Iasechko, Maksym
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.1
    • /
    • pp.85-92
    • /
    • 2022
  • In this article, we look at the application of BIM (Building Information Modeling) in sustainable infrastructures. In response to global warming, energy shortages, and environmental degradation, people are trying to build eco-friendly, low-carbon cities and promote eco-friendly homes. A "green" building is the entire life cycle of a building that includes maximizing the conservation of resources (energy, water, land, and materials), protecting the environment, reducing pollution, providing people with healthy, comfortable, and efficient use of space, and establishing harmony between nature and architecture. In the field of ecological and sustainable buildings, BIM modeling can be integrated into buildings with analog energy, air flow analysis, and solar building ecosystems. Using BIM technologies, you can reduce the amount of waste and improve the quality of construction. These technologies create "visualization" of digital building models through multidimensional digital design solutions that provide" modeling and analysis "of Scientific Collaboration Platforms for designers, architects, utility engineers, developers, and even end users. Moreover, BIM helps them use three-dimensional digital models in project design and construction and operational management.

Selecting Optimal CO2-Free Hydrogen Production Technology Considering Market and Technology (기술, 경제성을 고려한 최적 친환경 수소생산 기술 선정 방법)

  • Ji Hyun Lee;Seong Jegarl
    • New & Renewable Energy
    • /
    • v.19 no.2
    • /
    • pp.13-22
    • /
    • 2023
  • With the increased interest in renewable energy, various hydrogen production technologies have been developed. Hydrogen production can be classified into green, blue, gray, and pink hydrogen depending on the production method; each method has different technical performance, costs, and CO2 emission characteristics. Hence, selecting the technology priorities that meet the company strategy is essential to develop technologically and economically feasible projects and achieve the national carbon neutrality targets. In addition, in early development technologies, analyzing the technology investment priorities based on the company's strategy and establishing investment decisions such as budget and human resources allocation is important. This study proposes a method of selecting priorities for various hydrogen production technologies as a specific implementation plan to achieve the national carbon neutrality goal. In particular, we analyze key performance indicators for technology, economic feasibility, and environmental performance by various candidate technologies and suggest ways to score them. As a result of the analysis using the aforementioned method, the priority of steam methane reforming (SMR) technology combined with carbon capture & storage (CCS) was established to be high in terms of achieving the national carbon neutrality goal.

SUSTAINABILITY SOLUTIONS USING TRENCHLESS TECHNOLOGIES IN URBAN UNDERGROUND INFRASTRUCTURE DEVELOPMENT

  • Dae-Hyun (Dan) Koo;Samuel Ariaratnam
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.367-374
    • /
    • 2013
  • Underground infrastructure systems provide essential public services and goods through buried structures including water and sewer, gas and petroleum, power and communication pipelines. The majority of existing underground infrastructure systems was installed in green field areas prior to development of complex urban built environments. Currently, there is a global trend to escalate major demand for underground infrastructure system renewal and new installation while minimizing disruption and maintaining functions of existing superstructures. Therefore, Engineers and utility owners are rigorously seeking technologies that minimize environmental, social, and economic impact during the renewal and installation process. Trenchless technologies have proven to be socially less disruptive, more environmentally friendly, energy conservative and economically viable alternative methods. All of those benefits are adequate to enhance overall sustainability. This paper describes effective sustainable solutions using trenchless technologies. Sustainability is assessed by a comparison between conventional open cut and trenchless technology methods. Sustainability analysis is based on a broad perspective combining the three main aspects of sustainability: economic; environmental; and social. Economic includes construction cost, benefit, and social cost analysis. Environmental includes emission estimation and environmental quality impact study. Social includes various social impacts on an urban area. This paper summarizes sustainable trenchless technology solutions and presents a sustainable construction method selection process in a proposed framework to be used in urban underground infrastructure capital improvement projects.

  • PDF

Next Generation Rotorcraft Technologies in USA and Europe (미국과 유럽의 차세대 회전익 기술 개발 현황)

  • Oh, Sejong;Kim, Sung Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.8
    • /
    • pp.713-721
    • /
    • 2014
  • In Europe and USA, new programs called GRC(Green Rotorcraft) and SRW (Subsonic Rotary Wing program) respectively, have been currently underway for developing the next generation rotorcraft. The final goal is to develope fuel-efficient/environmental-friendly tilt-rotor civilian rotorcraft, which can partly replace short-range regional aircrafts. Also for safe operation, the new rotorcraft technology is cooperated with the new air transport management(ATM) system, called SESAR(Single European Sky ATM Research) and NextGen(Next Generation Air Transport System) in Europe and USA. In addition to achieve the final goal, the tilt-rotor aircraft, they are trying to improve the performance of conventional helicopters by adopting more efficient propulsion system, active rotor system, and reducing internal and external noise. Especially in GRC program of Europe, the environmental factors such as noise, fuel efficiency, reduction of emission gas(CO2, NOx), are focused for the new technologies.

U.S.'s Patent Network Analysis and Technology Trends on Underground Water for the Response of Climate Change (기후변화 대응을 위한 미국 지하수 기술 특허네트워크 분석과 주요 특허 기술 동향)

  • Yoon, Soon-Uk;Choi, Hanna;Kim, Minchul
    • Journal of Energy Engineering
    • /
    • v.28 no.3
    • /
    • pp.55-64
    • /
    • 2019
  • This study identified key patents on U.S. underground water technology through patent network analysis. As a result, there were many technologies that used the technology to remove heavy metals to prevent contamination of groundwater. While patents between groundwater technology patents were in charge of intermediaries, the connectivity between groundwater technologies is not high. The patented technologies related to groundwater were largely distinguishable by pumping, monitoring, and decontamination. Monitoring includes techniques that enable identification of physical and biological properties, such as the type of contaminants, as well as geographic characteristics for analysis of groundwater flow, flow or water quality. Pollution purification technology refers to the process of physiochemical and biological purification for soil and groundwater. U.S. technology cases showed that the U.S. had high technology in water treatment area. And patent protection were also needed to cope with water shortages caused by climate change.