• Title/Summary/Keyword: Green ship design

Search Result 40, Processing Time 0.038 seconds

Computation of the Green Water Design Impact Loads Acting on the Box-Type Structure of a High-Speed Ship's Bow (고속선박의 선수부 상자형 구조물에 작용하는 Green Water 설계 충격하중의 산출)

  • Kim, Yong Jig;Kim, In Chul;Shin, Sangmook
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.1
    • /
    • pp.34-42
    • /
    • 2017
  • In rough seas, green water shipped on board may impose quite large impact loads on the structures on deck and sometimes result in structure damages. One of the essential tasks of the naval fluid engineers is to provide the design impact loads which are needed for proper design of the structure strength against the green water impacts. Computation of the design impact load due to green water needs first a process to find the sea condition and the ship cruising condition which cause maximum green water impacts on structures as well as other succeeding processes to compute ship motion responses, green water flows and impact loads. Also, as a bold and practical process, it is needed that the irregular real seas are to be substituted by design regular waves which are equivalent in view points of green water impacts. In this paper, the whole processes to compute the design green water loads acting on bow structure are set up creatively. And the green water design impact loads acting on the box-type structure of a high-speed ship's bow are computed and discussed.

Computation of the Bow Deck Design Pressure against the Green Water Impact (Green Water 충격에 대비한 선수갑판 설계압력의 산출)

  • Kim, Yong Jig;Shin, Ki-Seok;Lee, Seung-Chul;Ha, Youngrok;Hong, Sa Young
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.4
    • /
    • pp.343-351
    • /
    • 2019
  • Green water impact may sometimes cause some structure damages on ship's bow deck. Prediction of proper design pressure against the green water impact is an essential task to prevent the possible damages on bow deck. This paper presents a computational method of the bow deck's design pressure against the green water impact. Large heave and pitch motions of ship are calculated by the time domain nonlinear strip method. Green water flow and pressure on bow deck are simulated by the predictor-corrector second kind upstream finite difference method. This green water simulation method is based on the shallow water wave equations expanded for moving bottom conditions. For various kind of ships such as container ship, VLCC, oil tanker and bulk carrier, the green water design pressures on bow deck are computed and discussed. Also, the obtained results of design pressure on bow deck are compared with those of the classification society rules and discussed.

A Study on the Green Ship Design for Ultra Large Container Ship (대형 컨테이너 운반선의 그린쉽 설계에 관한 연구)

  • Kim, Mingyu;Park, Dong-Woo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.5
    • /
    • pp.558-570
    • /
    • 2015
  • A study on the green ship design for Ultra Large Container Ship (ULCS, 18,000 TEU Class Container Ship) was performed based on the four step procedures of the initial design and hull form optimization to maximize economic and propulsive performance. The first, the design procedure for ULCS was surveyed with economic evaluation considering environmental rules and regulations. The second, the characteristics of single and twin skeg container ships were investigated in view of initial design and performances. The third, the hull form optimization for single and twin skeg ships with the same dimensions was conducted to improve the resistance and propulsive performances at design draught and speed by several variations and the results of the optimization were verified by numerical calculations of CFD and model test. The last, for the estimated operating profile of draught and speed, the hull forms of single and twin sked ships were optimized by CFD. From this study, the methodologies to optimize the hull form of ULCS were proposed with considerations during the green ship design and the improvement of the energy efficiency for the optimized hull forms was confirmed by the proposed formula of the total energy considering design conditions, operating profile and fuel oil consumption.

선박의 속도 저하를 고려한 운항효율제고에 관한 연구

  • Gong, Gil-Yeong;Lee, Bo-Gyeong;Lee, Yun-Seok
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2013.06a
    • /
    • pp.198-200
    • /
    • 2013
  • 최근 국제해사기구(IMO)의 해양환경보호위원회에서(MEPC)는 선박에서 대기로 방출되는 CO2의 양을 최소로 하기 위해서 신조선 설계 건조시 에너지효율지수(EEDI : Energy Efficiency Design Index for new ships), 에너지 효율지표(EEOI : Energy Efficiency Operational Indicator), 그리고 에너지 효율관리 계획(SEEMP : Ship Energy Efficiency Management Plan) 지수들을 이용하여 전 세계 이산화탄소 배출 규제 방침을 운영하고 있다. 이러한 환경규제 강화와 발맞추어 세계 각국은 지속적인 Green-ship의 개발과 저탄소 고효율 선박의 운항을 위해 연구와 노력한다. 본 연구에서는 선박이 움직이는데 있어 동력이 시작되는 부분과 그 힘이 전달되어 운항자의 의식이 반영되어 선체의 이동으로 이어지기까지 흐름에 대해 도식 및 수식으로 정리하였다. 그리하여 해상의 상태와 이에 따른 운항결정이 어떤 결과를 초래할 수 있는지 살펴보고 이 부분에서 운항효율을 증대시킬 수 있는 부분에 대해 모색해 보았다. 또한 엔진의 상태에 따른 연료 절감율에 대해 살펴보고 보다 경제적 운항을 위한 적정 RPM과 속도 등에 대해서 고찰해 보았다. 이 같은 정리를 통해 앞으로의 Echo-ship, Green-ship의 연구방향에 대한 초석으로 삼고자 한다.

  • PDF

CFD as a seakeeping tool for ship design

  • Kim, Sun-Geun Peter
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.3 no.1
    • /
    • pp.65-71
    • /
    • 2011
  • Seakeeping analysis has progressed from the linear frequency-domain 2D strip method to the nonlinear timedomain 3D panel method. Nevertheless, the violent free surface flows such as slamming and green water on deck are beyond the scope of traditional panel methods based on potential theory. Recently, Computational Fluid Dynamics (CFD) has become an attractive numerical tool that can effectively deal with the violent free surface flows. ABS, as a classification society, is putting forth a significant amount of effort to implement the CFD technology to the advanced strength assessment of modern commercial ships and high-speed naval craft. The main objective of this study is to validate the CFD technology as a seakeeping tool for ship design considering fully nonlinear three-dimensional slamming and green water on deck. The structural loads on a large container carrier were successfully calculated from the CFD analysis and validated with segmented model test measurements.

Conceptual Design for Fully Electrified Car Ferry Powered by Removable Battery System (이동식 전원공급장치 기반 전기추진차도선의 개념설계 연구)

  • Lee, Jun-Ho;Jang, Dong-Won;Jin, Song-Han;Shin, Seung-Woo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.6
    • /
    • pp.856-866
    • /
    • 2021
  • The increasing international awareness regarding air pollutant reduction has resulted in increasing demand for eco-friendly ships; hence, electric ships are being actively developed by various countries. Presently, studies on electric ships are mainly focused on electric propulsion systems and electric motors. However, from the ship perspective, there are no studies on conceptual designs for coastal car ferries powered by removable power supply systems. In the present study, the main research consideration is regarding the conceptual design of a fully electrified car ferry using a battery-based removable system as the main power source. By analyzing the dimensions of more than 100 domestic coastal car ferries, the main criteria satisfying the requirements for developing a suitable vessel were derived, and a study on intact/damage stability was conducted considering the application of a removable battery truck. Further analyses of the problems concerning the conceptual design were also performed to derive solutions.

Experimental Investigation of the Bow Configuration Influence on the Green Water on FPSO (FPSO 갑판 침입수 현상에 대한 선수부 형상 영향의 실험적 고찰)

  • Lee, Hyun-Ho;Lim, Ho-Jeong;Rhee, Shin-Hyung
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.5
    • /
    • pp.9-14
    • /
    • 2009
  • The green water on deck has many harmful effects on the vessel in rough seas such as damages to hull structures, damages to cargos, increase of the downtime, decrease of the stability, and so on. Floating Production Storage and Offloading vessels (FPSOs) are operated in a specific location and are normally positioned to meet mostly head or bow waves in order to reduce the roll motions. But this makes FPSOs more vulnerable to green water around the bow region therefore the bow shape should be properly designed to mitigate the green water damage. In this paper, experimental results in regular head waves for three kinds of bow shapes are compared and some design considerations are proposed, with the building a database for computational fluid dynamics (CFD) validation in mind.

Fundamental Study for Predicting Ship Resistance Performance Due to Changes in Water Temperature and Salinity in Korea Straits (대한해협에서의 수온 및 염도변화를 고려한 선박의 저항성능 예측을 위한 기초 연구)

  • Seok, Jun;Jin, Song-Han;Park, Jong-Chun;Shin, Myung-Soo;Kim, Sung-Yong
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.418-426
    • /
    • 2015
  • Recently, shipping operators have been making efforts to reduce the fuel cost in various ways, such as trim optimization and bulb re-design. Furthermore, IMO restricts the hydro-dioxide emissions to the environment based on the EEDI (Energy Efficiency Design Index), EEOI (Energy Efficiency Operational Indicator), and SEEMP (Ship Energy Efficiency Management Plan). In particular, ship speed is one of the most important factors for calculating the EEDI, which is based on methods suggested by ITTC (International Towing Tank Conference) or ISO (International Standardization Organization). Many shipbuilding companies in Korea have carried out speed trials around the Korea Straits. However, the conditions for these speed trials have not been exactly the same as those for model tests. Therefore, a ship’s speed is corrected by measured environmental data such as the seawater temperature, density, wind, waves, swell, drift, and rudder angle to match the conditions of the model tests. In this study, fundamental research was performed to evaluate the ship resistance performance due to changes in the water temperature and salinity, comparing the ISO method and numerical simulation. A numerical simulation of a KCS (KRISO Container ship) with a free-surface was performed using the commercial software Star-CCM+ under three conditions that were assumed based on the water temperature and salinity data in the Korea Straits. In the simulation results, the resistance increased under low water temperature & high salinity conditions, and it decreased under high water temperature & low salinity conditions. In addition, the ISO method showed the same result as the simulation.

Development of a GVT (Gas Valve Train) Control System for LNG Fueled Vessels (LNG 추진 선박 엔진용 GVT 제어 시스템 개발)

  • Kang, Inpil;Kim, Kyu-Cheol
    • Journal of Power System Engineering
    • /
    • v.21 no.4
    • /
    • pp.70-76
    • /
    • 2017
  • This paper presents the development of a Gas Valve Train (GVT) control system which is the core equipment of LNG fueled vessels. Due to the increasing worldwide demand for echo friendly green ship products, domestic companies urgently require to develop a core equipments for the LNG fueled vessels to secure worldwide markets in marine engineering. A LNG fueled engine generally equips the GVT, a fuel supply system that steadily supplies clean high-pressure LNG to the engine. The GVT requires a safety operational control system that can prevent any gas leakage accident, and a system that monitors operation status in real time. Therefore, we introduces a development for GVT control and monitoring system design and the design was systematically performed by means of functional analysis and differentiation of foreign advanced products.