• 제목/요약/키워드: Green sheet thickness

검색결과 28건 처리시간 0.02초

중, 고압용 적층 세라믹 캐패시터 제작 및 분석 (Fabrication and Analysis of Multilayer Ceramic Capacitors for Medium and High Voltage)

  • 윤중락;김민기;이헌용;이석원
    • 한국전기전자재료학회논문지
    • /
    • 제18권8호
    • /
    • pp.685-689
    • /
    • 2005
  • In the fabrication and design of MLCCs (Multilayer Ceramic Capacitors) with Ni inner electrode for medium and high voltage, reliability and dielectric breakdown mode have been investigated. For thickness of green sheet, the relationship between the rated voltage versus the thickness of green sheet. Increasing the thickness of green sheet increases the dielectric breakdown voltage. However, a practical limit to this linear relationship occurs at 30 urn and above. As the thickness of green sheet increased, dielectric breakdown voltage and weibull coefficient is increased, but abruptly decrease at 30 urn and 36 urn. When 24 urn of green sheet thickness, weibull coefficient and dielectric breakdown voltage were 13.58 and 70 V/um respectively. The results enabling the MLCCs to demonstrate high levels of reliability at medium and high voltage.

유기 용매 혼합비에 따른 슬러리의 유동 특성과 세라믹 그린 쉬트의 두께 제어 (Effect of Solvent Mixture Ratio on Rheology Property of Slurry and Thickness Control of Ceramic Green Sheets)

  • 김준영;김승택;박종철;유명재
    • 한국전기전자재료학회논문지
    • /
    • 제21권3호
    • /
    • pp.236-241
    • /
    • 2008
  • The effect of organic solvent mixture ratio on the rheology property of slurry and thickness control of ceramic green sheet was investigated. For selecting a suitable dispersant multiple light scattering method was used to evaluate the particle migration velocity and variation of clarification layer thickness. Using the selected dispersant the dispersion property of solution according to solvent mixture ratio was investigated. Binder and plasticizers were added to formulate slurries and their viscosity was evaluated according to solvent mixture ratio. Ceramic green sheets with average thickness of 30, 50 urn were fabricated via tape casting and their thickness tolerances measured. As a result according to solvent mixture ratio the solution and slurry properties varied and for the mixture ratio of ethanol/toluene of 80/20 the ceramic green sheet with the lowest thickness tolerance was obtained.

미세 비아홀 펀칭 공정 중 이종 재료 두께에 따른 버 생성 (Thickness Effect of Double Layered Sheet on Burr Formation during Micro-Via Hole Punching Process)

  • 신승용;임성한;주병윤;오수익
    • 소성∙가공
    • /
    • 제13권1호
    • /
    • pp.65-71
    • /
    • 2004
  • Recent electronic equipment becomes smaller, more functional, and more complex. According to these trends, LTCC(low temperature co-fired ceramic) has been emerged as a promising technology in packaging industry. It consists of multi-layer ceramic sheet, and the circuit has 3D structure. In this technology via hole formation plays an important role because it provides an electric path for the packaging interconnection network. Therefore via hole qualify is very important for ensuring performance of LTCC product. Via holes are formed on the green sheet that consists of ceramic(before sintering) layer and PET(polyethylene terephthalate) one. In this paper we found the correlation between hole quality and process condition such as PET thickness and ceramic thickness. The shear behavior of double layer sheet by micro hole punching which is different from that of single layer one was also discussed.

Tape Casting법에 의한 PMS-PZT계 세라믹스 제조 및 전기적 특성 (The Fabrication and Electrical Properties of PMS-PZT Ceramics using a Tape Casting Method)

  • 정현제;나은상;최성철
    • 한국세라믹학회지
    • /
    • 제38권9호
    • /
    • pp.860-865
    • /
    • 2001
  • 본 논문은 출발물로서 2mol% CdO가 치환된 $0.05Pb(Mn_{1/3}Sb_{2/3})O_3-0.95Pb(Zr_{0.52}Ti_{0.48})O_3$ 분말을 제조 후, 닥터 블레이드 방법으로 green sheet를 제조하기 위한 slurry의 최적 공정첨가제 조성에 관한 연구를 수행하였다. 또한, 제조된 green sheet에 대하여 소결 특성과 두께 변환에 따른 유전 및 압전 특성을 관찰하였다. 공정첨가제의 첨가에 따른 점도거동을 통하여 slurry를 최적화하였고, TGA 분석으로 소결조건을 정하였으며, sheet의 특성에 미세구조와 XRD 등으로 측정하였다. 최적의 slurry는 고형분량 30vol%에 대해 분산제 3.0wt%에서 가장 안정화되었고, 이후 바인더/가소제(0.75/0.25) 3.0wt% 첨가시 점도는 7.55Pa${\cdot}$s이었다. Green sheet의 유전 및 압전 특성들은 각각 900$^{\circ}$C, 950$^{\circ}$C, 1000$^{\circ}$C로 소결온도를 증가함에 따라 다소 증가하였지만, 두께에 따른 특성들은 큰 변화가 관찰되지 않음을 확인하였다.

  • PDF

LTCC 기판의 미세 비아홀 펀칭 중 공정 변수의 영향 평가 (Evaluation of Punching Process Variables Influencing Micro Via-hole Quality of LTCC Green Sheet)

  • 백승욱;임성한;오수익
    • 소성∙가공
    • /
    • 제14권3호
    • /
    • pp.277-281
    • /
    • 2005
  • LTCC(Low temperature co-fired ceramic) is being recognized as a significant packaging material of electrical devices for the advantages such as relatively low temperature being needed for process, low conductor resistance and high printing resolution. In the process of LTCC electrical devices, the punched via-hole quality is one of the most important factors on the performance of the device. However, its mechanism is very complicated and optimization of the process seems difficult. In this paper, to clarify the process, via-hole punching experiments were carried out and the punched holes were examined in terms of their burr formation. The effects of thickness of PET sheet, ceramic sheet and punch-to- die clearance on via-hole quality were also discussed. Optimum process conditions are proposed and a factor $\kappa$ is introduced to express effect of the process variables.

세라믹 그린시트의 미세 비아홀 펀칭 공정 연구 (A study on micro punching process of ceramic green sheet)

  • 신승용;주병윤;임성한;오수익
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 추계학술대회논문집
    • /
    • pp.101-106
    • /
    • 2003
  • Recent electronic equipment becomes smaller, more functional, and more complex. According to these trends, LTCC(low temperature co-fired ceramic) has been emerged as a promising technology in packaging industry. It consists of multi-layer ceramic sheet, and the circuit has 3D structure. In this technology via hole formation plays an important role because it provides an electric path for the packaging interconnection network. Therefore via hole quality is very important for ensuring performance of LTCC product. Via holes are formed on the green sheet that consists of ceramic(before sintering) layer and PET(polyethylene Terephthalate) one. In this paper we found the correlation between hole quality and process condition such as ceramic thickness, and tool size. The shear behavior of double layer sheet by micro hole punching which is different from that of single layer one was also discussed.

  • PDF

C0G 온도계수 특성을 가지는 고압용 적층 칩 캐패시티의 유전 및 내전압 특성 (Dielectric Breakdown Voltage and Dielectric Properties of High Voltage Mutilayer Ceramic Capacitor with C0G Temperature Coefficient Characteristics)

  • 윤중락;우병철;정태석
    • 한국전기전자재료학회논문지
    • /
    • 제21권2호
    • /
    • pp.137-143
    • /
    • 2008
  • High voltage MLCCs with C0G temperature coefficient characteristics could apply DC-DC invertor were investigated for its dielectric properties. Also we manufactured MLCC through various process and studied the characteristics of dielectric break down voltage [BDV] and dielectric property as the variation of thickness in the green sheet and how to pattern the internal electrode. As the thickness of green sheet is increase, the dielectric BDV per unit thickness is decreased. But as the pattern of internal electrodes were floated we could manufacture the high voltage MLCC maintained its dielectric BDV a unit.

고용량 적층 세라믹 커패시터에서 설계 및 제조공정에 따른 전기적 특성 평가 (Design and Fabrication Process Effects on Electrical Properties in High Capacitance Multilayer Ceramic Capacitor)

  • 윤중락;우병철;이헌용;이석원
    • 한국전기전자재료학회논문지
    • /
    • 제20권2호
    • /
    • pp.118-123
    • /
    • 2007
  • The purpose of this work was to investigate the design and fabrication process effects on electrical properties in high capacitance multilayer ceramic capacitor (MLCC) with nickel electrode. Dielectric breakdown voltage and insulation resistance value were decreased with increasing stack layer number, but dielectric constant and capacitance were increased. With increasing green sheet thickness, dielectric breakdown voltage, C-V and I-V properties were also increased. The major reasons of the effects were thought to be the defects generated extrinsically during fabrication process and interfacial reactions formed between nickel electrode and dielectric layer. These investigations clearly showed the influence of both green sheet thick ness and stack layer number on the electrical properties in fabricating the MLCC.

LTCC 기판의 미세 비아홀 펀칭 중 공정 변수의 영향 평가 (Evaluation of punching process variables influencing micro via-hole quality of LTCC green sheet)

  • 백승욱;임성한;오수익;윤성만;이상목;김승수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 제3회 금형가공 심포지엄
    • /
    • pp.260-265
    • /
    • 2004
  • LTCC(Low temperature co-fired ceramic) is being recognized as a significant packaging material of electrical devices for the advantages such as relatively low temperature being needed for process, low conductor resistance and high printing resolution. In the process of LTCC electrical devices, the punched via-hole quality is one of the most important factors on the performance of the device. However, its mechanism is very complicated and optimization of the process seems difficult. In this paper, to clarify the process, via-hole punching experiments were carried out and the punched holes were examined in terms of their burr formation. The effects of thickness of PET sheet and ceramic sheet and punch-to-die clearance on via-hole quality were also discussed. Optimum process conditions are proposed and a factor k is introduced to express effect of the process variables.

  • PDF

Investigations of the Boron Diffusion Process for n-type Mono-Crystalline Silicon Substrates and Ni/Cu Plated Solar Cell Fabrication

  • Lee, Sunyong;Rehman, Atteq ur;Shin, Eun Gu;Lee, Soo Hong
    • Current Photovoltaic Research
    • /
    • 제2권4호
    • /
    • pp.147-151
    • /
    • 2014
  • A boron doping process using a boron tri-bromide ($BBr_3$) as a boron source was applied to form a $p^+$ emitter layer on an n-type mono-crystalline CZ substrate. Nitrogen ($N_2$) gas as an additive of the diffusion process was varied in order to study the variations in sheet resistance and the uniformity of doped layer. The flow rate of $N_2$ gas flow was changed in the range 3 slm~10 slm. The sheet resistance uniformity however was found to be variable with the variation of the $N_2$ flow rate. The optimal flow rate for $N_2$ gas was found to be 4 slm, resulting in a sheet resistance value of $50{\Omega}/sq$ and having a uniformity of less than 10%. The process temperature was also varied in order to study its influence on the sheet resistance and minority carrier lifetimes. A higher lifetime value of $1727.72{\mu}s$ was achieved for the emitter having $51.74{\Omega}/sq$ sheet resistances. The thickness of the boron rich layer (BRL) was found to increase with the increase in the process temperature and a decrease in the sheet resistance was observed with the increase in the process temperature. Furthermore, a passivated emitter solar cell (PESC) type solar cell structure comprised of a boron doped emitter and phosphorus doped back surface field (BSF) having Ni/Cu contacts yielding 15.32% efficiency is fabricated.