• Title/Summary/Keyword: Green plants

Search Result 1,089, Processing Time 0.03 seconds

First Report of Bacterial Spot Disease Caused by Pseudomonas capsici on Castor Bean in Korea (Pseudomonas capsici에 의한 아주까리 세균점무늬병의 국내 첫 보고)

  • Heeil Do;Seung Yeup Lee;Bang Wool Lee;Hyeonheui Ham;Mi-Hyun Lee;Young Kee Lee
    • Research in Plant Disease
    • /
    • v.29 no.4
    • /
    • pp.440-444
    • /
    • 2023
  • In August 2021, water-soaking symptoms of bacterial spot disease were observed on castor bean in a field in Gangseo District, Busan. Bacteria isolated from the lesion when cultured on tryptic soy agar appeared to be nonmucoid and pale green. To confirm whether the isolates were the causative agent of the spot disease, they were inoculated onto healthy castor bean plants. The same symptoms were observed on the inoculated tissue, and the bacteria were reisolated from the lesion. Furthermore, the isolates were consistent with the biochemical and physiological features of Pseudomonas capsici. Sequencing analysis using 16S rRNA and housekeeping genes (gyrB, rpoD) showed that the isolates shared a high sequence similarity with P. capsici. These results confirmed that the strains belonged to P. capsici. To our knowledge, this is the first report of bacterial spot disease caused by P. capsici on castor bean in Korea.

Characteristics Comparison of Mutants Induced through Gamma Irradiation in 'Kardinal' Rose (감마선 조사로 유기한 장미 '카디날' 돌연변이체의 특성 비교)

  • Koh, Gab-Cheon
    • Horticultural Science & Technology
    • /
    • v.29 no.5
    • /
    • pp.456-460
    • /
    • 2011
  • This study was carried out to compare the pattern of mutant variation and to evaluate the characteristics of mutants obtained by gamma irradiation in rose 'Kardinal'. Forty four rooted cuttings of 'Kardinal' were irradiated at 70 Gy gamma-ray dose from a $^{60}Co$ source to induce mutants in 2002. The irradiated plants were planted in field, and observed spotting of petal color mutants from 2002 to 2004. Four different kinds of mutant twigs with each different color flower were obtained from the irradiated 'Kardinal' with red petal. After being identified to be a stable mutant from 2004 to 2008, each mutant line propagated by cutting was hydroponic-cultured to evaluate the characteristics in the greenhouse from 2008 to 2009. Four mutant lines obtained from 'Kardinal' with red petal (Red group, 44A, 45B) include KA1 with light pink petal (Red group, 55B-55D), KA2 with pink petal (Red group, 63A-63B), KA3 with deep pink (Red purple, N57A-N57C), and KA4 with orange red (Red group, 43A-43B). Diameters of each flower in four mutant lines were different from 'Kardinal'. The line KA1 was 9.5 cm wide, and it showed the smallest diameter when compared to other mutants. While the line KA2 was the largest one with 12.5 cm 'Kardinal'. Petal number per flower was also variable among the mutants. The line KA2 had 39.8 petals being the largest number among the mutants, while the line KA1 was the lowest one compared to 35.5 petals of 'Kardinal'. Petal color was measured by using colorimeter. Brightness (L) measured at each petal of four mutants increased more than 'Kardinal'. CIE Lab values, a and b decreased more than 'Kardinal' at the petal color of three mutants except the line KA4. Characteristics of shoot, leaf, etc. from four mutants were also different from the ones of 'Kardinal'. The line KA1 was shortest in shoot, node and peduncle length, and lowest in prickle number. The reverse side of leaves was reddish green color in 'Kardinal' as well as the line KA4, but green color in the line KA1, KA2, and KA3.

Stabilizing Soil Moisture and Indoor Air Quality Purification in a Wall-typed Botanical Biofiltration System Controlled by Humidifying Cycle (가습 주기에 따른 벽면형 식물바이오필터의 토양 수분 안정화 및 실내공기질 정화)

  • Lee, Chang Hee;Choi, Bom;Chun, Man Young
    • Horticultural Science & Technology
    • /
    • v.33 no.4
    • /
    • pp.605-617
    • /
    • 2015
  • The ultimate goal of this research is to develop a botanical biofiltration system that combines a green interior, biofiltering, and automatic irrigation to purify indoor air pollutants according to indoor space and the size of biofilter. This study was performed to compare the stability of air flow characteristics and removal efficiency (RE) of fine dust within a wall-typed (vertical) botanical biofilter depending on humidifying cycle and to investigate RE of volatile organic compounds (VOCs) by the biofilter. The biofilter used in this experiment was designed as an integral form of water metering pump, water tank, blower, humidifier, and multi-level planting space in order to be suitable for indoor space utilization. As a result, relative humidity, air temperature, and soil moisture content (SMC) within the biofilter showed stable values regardless of three different humidifying cycles operated by the metering pump. In particular, SMCs were consistently maintained in the range of 27.1-29.7% during all humidifying cycles; moreover, a humidifying cycle of operating for 15 min and pausing for 45 min showed the best horizontal linear regression (y = 0.0008x + 29.09) on SMC ($29.0{\pm}0.2%$) during 120 hour. REs for number of fine dust (PM10) and ultra-fine dust (PM2.5) particles passed through the biofilter were in the range of 82.7-89.7% and 65.4-73.0%, respectively. RE for weight of PM10 passed through the biofilter was in the range of 58.1-78.9%, depending on humidifying cycle. REs of xylene, ethyl benzene, total VOCs (TVOCs), and toluene passed through the biofilter were in the range of 71.3-75.5%, while REs of benzene and formaldehyde (HCHO) passed through the biofilter were 39.7% and 44.9%, respectively. Hence, it was confirmed that the wall-typed botanical biofilter suitable for indoor plants was very effective for indoor air purification.

Membrane Process Using Polysulfone Hollow Fiber Membranes for Vehicle Fuel Production from Bio-Methane Mixture (폴리설폰 중공사막 모듈을 이용한 자동차 연료용 고순도 바이오메탄 분리공정 연구)

  • Kim, Jee Sang;Kong, Chang In;Park, Bo Ryoung;Kim, Jeong-Hoon
    • Membrane Journal
    • /
    • v.24 no.3
    • /
    • pp.213-222
    • /
    • 2014
  • In this study, 2-stage recirculation membrane process was developed for purification of high purity bio-methane for the vehicle fuel application. Pure gas permeation and mixture gas permeation test were done as a function of methane content and pressure in the feed using polysulfone membrane modules. 2-stage membrane plant was designed, constructed in a food waste treatment cite. Dehumidification, dry desulfurization, and desiloxane plants are installed for the removal of $H_2O$, $H_2S$ and siloxane in the biogas. Permeation test were done with the pre-treated methane mixture in terms of methane purity and recovery by adjusting the ratio of membrane area (1:1, 1:3, 2:2) in the first and second membrane modules in the plant. When membrane area of 2 stage increased to $3m^2$ from $1m^2$ at 1-stage membrane area of $1m^2$, the feed rate and $CH_4$ recovery at 95% methane purity were increased from 47.1% to 92.5% respectively. When the membrane area increased two-fold (1:1 to 2:2), $CH_4$ recovery increased from 47.1% to 88.3%. When the feed flow rate was increased, in 1:3 ratio, final purity of the methane is reduced, the methane recovery is increased. When operating pressure was increased, the feed rate was increased and recovery was slightly decreased. From this result, membrane area, feed pressure and feed rate could be the important factor to the performance of the membrane process.

Effect of Soil Incorporation of Graminaceous and Leguminous Manures on Tomato (Lycoperiscon esculentum Mill.) Growth and Soil Nutrient Balances (화본과 및 두과 녹비작물 토양환원에 따른 토마토 생육 및 토양 양분수지량 변화)

  • Lee, In-Bog;Kang, Seok-Beom;Park, Jin-Myeon
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.4
    • /
    • pp.343-348
    • /
    • 2008
  • To investigate the effects of incorporation of green manures (GM) into a sandy loam soil on growth, yield, and nutrient uptake of tomato (Lycoperiscon esculentum Mill.) and nutrient balances (input minus offtake of nutrients), five tomato production systems were compared under the condition of plastic film house: 1) a no input system (no additional amendment or inputs, 0-To-0-To); 2) a conventional system (application of N-P-K chemical fertilizers, Cf-To-Cf-To); 3) a leguminous GM-containing system (hairy vetch-tomato-soybean-tomato, Hv-To-Sb-To); 4) a graminaceous GM-containing system (rye-tomato-sudan grass-tomato, Ry-To-Sd-To); and 5) system mixed with leguminous and graminaceous GMs (rye-tomatosoybean- tomato, Ry-To-Sb-To). Here, hairy vetch and rye were cultivated as winter cover crops during late $Dec{\sim}late$ Feb and soybean and sudan grass were cultivated as summer cover crops during late $Jun{\sim}mid$ Aug. All of them cut before tomato planting and then incorporated into soil. Biomass of GMs was greater in summer season than that of winter season. Nitrogen amount fixed by a leguminous plants was about $126\;kg\;ha^{-1}$ per a cropping season, corresponding to 60% N level needed for tomato production, which was comparable to 50 and $96\;kg\;ha^{-1}$ fixed by rye and sudan grass. As a result, tomato yield of Hv-To-Sb-To system (legume GM treatment) was similar to Cf-To-Cf-To (conventional), but that in Ry-To-Sd-To system (graminaceous GM treatment) was not attained to a half level of conventional treatment. Nutrient budgets for N, P and K on the conventional farm were balanced or somewhat positive exception for minus-balanced K. Ry-To-Sd-To system showed a positive N, P and K budgets due to the depressed growth of tomato which is caused by high C/N ratio and low N-fixing capacity of the GMs. Inversely, those of Hv-To-Sb-To system were negative in all of N, P and K budgets because of increased growth and yield of tomato with high nitrogen-supplying capacity as well as low C/N ratio of leguminous GM. In conclusion, although conventional cultivation has an advantage in relation to N, P and K nutrient budgets rather than GM-incorporated systems, a leguminous GMs could be recommended as nitrogen reservoir and soil amendment because the yield of tomato between use of leguminous GM and conventional cultivation was not only significantly difference, but also GMs commonly reduce nutrient loss and improve microbial communities.

Effects of Planting Soil on the Soil Moisture and the Growth of Vitex rotundifolia for Green Roof (옥상녹화 식재지반이 토양수분과 순비기나무의 생육에 미치는 영향)

  • Park, Jun-Suk;Park, Je-Hea;Ju, Jin-Hee;Yoon, Yong-Han
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.38 no.3
    • /
    • pp.98-106
    • /
    • 2010
  • This study focuses on the appropriate planting soil for Vitex rotundifolia by planting soil. Different soil depth levels were achieved at 15cm and 25cm in the green roof module system that was created with woody materials for a $500{\times}500{\times}300mm$ area. The soil mixture ratio was $S_{10}$, $L_{10}$, $S_7L_3$, $S_5L_5$, $P_7P_1L_2$, $P_6P_2L_2$, $P_5P_3L_2$ and $P_4P_4L_2$. This study was carried out over five months between April and September, 2006. The amount of soil moisture tends to decrease according to the planting soil. For the experimental items $S_{10}$, $S_7L_3$ and $S_5L_5$, the amount of soil moisture tends to decrease rapidly. However, for the experimental items $P_7P_1L_2$, $P_6P_2L_2$, $P_5P_3L_2$ and $P_4P_4L_2$, conditions containing perlite and peat moss, the amount of moisture tends to decrease more gradually. As a result, the use of soil-improving amending for the afforestation planting of roofs with a low level of management is need. After experimenting with the ratio of soil mixture for Vitex rotundifolia, the planting soil for experimental item $P_6P_2L_2$, $P_5P_3L_2$ and $P_4P_4L_2$ appeared excellent. For experimental item $S_{10}$, the growth of Vitex rotundifolia seemed to be weaker than that of others, because of the low levels of moisture and organic matter in the soil. For experimental item $L_{10}$, there appeared to be a low level of growth, even when the levels of moisture and organic matter were high. This may have occurred because of the low level of soil pH and the excessive amount of exchangeable cation. At the depth of 25cm, the growth of Vitex rotundifolia is vigorous overall. For experimental item at 15cm, Vitex rotundifolia was able to survive for 14 days without any rainfall and Vitex rotundifolia was better in amended soil, $P_6P_2L_2$, $P_5P_3L_2$ and $P_4P_4L_2$, than natural soil, SL.

Studies on the Resistance of Green Peach Aphids to Insecticides(II) -Local Differences in Susceptibility- (복숭아혹진딧물의 살충제(殺蟲劑) 저항성(抵抗性)에 관(關)한 연구(硏究)(II) 감수성(感受性)의 지역적(地域的) 차이(差異))

  • Choi, Seung-Yoon;Kim, Gil-Hah
    • Korean journal of applied entomology
    • /
    • v.24 no.4 s.65
    • /
    • pp.223-230
    • /
    • 1986
  • A series of experiments were carried out to evaluate the differences in susceptibility of the 13-aphidicidial insecticides in the green peach aphids(Myzus persicae) collected from 13 different localities. The aphids were reared and increased on the potted tobacco plants in the laboratory. The susceptibility to insecticides was compared at the $LC_{50}$ levels with the resistant ratio by a leaf-dip method with a laboratory strain reared for 2 years in the laboratory without exposure to insecticides. The susceptibility to the insecticides was greatly varied with the local strains. The local strains demonstrated relatively high resistance to the insecticides over the laboratory strain at the $LC_{50}$ level; in resistant fold, 2.3 to 519.0 to cypermenthrin, 2.3 to 494.5 to decamethrin, 2.8 to 442.4 to fenvalerate, 2.5 to 170.6 to formothion, 1.5 to 494.5 to decamethrin, 2.8 to 442.4 to fenvalerate, 2.5 to 170.6 to formothion, 1.5 to 231.8 to phosphamidon, 3.1 to 42.1 to monocrotophos, 1.0 to 30.9 to phenthoate+dimethoate, 1.8 to 21.0 to heptanophos, 2.1 to 24.8 to oxydemeton-methyl, 1.0 to 24.9 to thiometon, 1.6 to 4.7 acephate, 0.8 to 4.1 to pirimicarb.

  • PDF

Biological activities of Fusarium isolates from soil and plants (토양 및 식물체로부터 분리한 Fusarium속 균주들의 생물활성)

  • Park, Joong-Hyeop;Choi, Gyung-Ja;Kim, Heung-Tae;Hong, Kyung-Sik;Song, Cheol;Kim, Jin-Seog;Kim, Jeong-Gyu;Cho, Kwang-Yun;Kim, Jin-Cheol
    • The Korean Journal of Pesticide Science
    • /
    • v.4 no.3
    • /
    • pp.19-26
    • /
    • 2000
  • In order to select potent bioactive isolates, 70 Fusarium isolates obtained from soil and 21 plant species were screened by antifungal, insecticidal, herbicidal, and duckweed bioassays after culturing in potato dextrose broth and rice solid media. Eight (11.4%) of the 70 liquid broth cultures showed disease-controlling activities more than 80% against at least one of the 6 plant diseases tested. Fusarium sp. FO-68 isolate exhibited the most potent antifungal activity; it controlled rice blast, wheat leaf rust, and barley powdery mildew with control values more than 95%. Out of 70 solid cultures, 21 (30.0%) controlled at least one plant disease more than 80% and F. equiseti FO-68 isolate showed disease-controlling activities more than 95% against 3 plant diseases such as rice blast, tomato late blight, and wheat leaf rust. As for tile insecticidal activities, 2 liquid and 1 solid cultures showed potent insecticidal activities against pest insects more than 80%, Liquid cultures of F. oxysporum FO-61 and Fusarium sp. FO-80 isolates exhibited insecticidal activities more than 80% against green peach aphid and diamondback moth, respectively. The solid culture of Fusarium sp. FO-510 isolate had 80% insecticidal activity against green peach aphid. However, none of liquid and solid cultures of the 70 Fusarium isolates showed potent herbicidal activities against 10 upland weeds. As the results of duckweed assay, 3 liquid cultures showed 70% growth inhibitory activity at concentrations less than 1.25% of culture supernatants and 9 solid cultures had a potent inhibitory activity against duckweed growth. On the other hand, there was a significant correlation between antifungal activities and herbicidal activities against duckweed of both liquid and solid cultures of tile 70 Fusarium isolates.

  • PDF

The Absorption and Purification of Air Pollutants and Heavy Metals by Selected Trees in Kwangju (광주지역(光州地域)에서 주요(主要) 수목(樹木)의 대기오염물질(大氣汚染物質)과 중금속(重金屬) 흡수(吸收) 정화기능(淨化機能)에 관(關)한 연구(硏究))

  • Cho, Hi Doo
    • Journal of Korean Society of Forest Science
    • /
    • v.88 no.4
    • /
    • pp.510-522
    • /
    • 1999
  • The air pollutants ; $SO_2$, $SO{_4}^{-2}$, $NO{_3}^-$, $Cl^-$ are absorbed into soils through falling with dusts and rain from the atmosphere. The sources of heavy metal contaminants in the environments are agricultural and horticultural materials, sewage sludges, fossil fuel combustion, metallurgical industries, electronics and waste disposal etc.. The soils and hydrosphere can be polluted on the way of the circulation of these heavy metals. Studied pollutant anions are $SO{_4}^{-2}$, $NO{_3}^-$ and $Cl^-$ and heavy metals are Se, Mo, Zn, Cd, Pb, Mn, Cr, Co, V, As, Cu and Ni which are the elements to be concerned with the essentials for plants, with animal and human health. This study is with the aim of selecting the species of roadside trees and green space trees which have excellent absorption of air pollutants and heavy metals from the atmosphere and the soils in the urban area. Two areas are designated to carry out this study : urban area ; Kwangju city and rural area ; the yard of Forest Environment Institute of Chollanam-do, at Sanje-ri, Sampo-myum, Naju city, Chollanam-do (23km away from Kwangju). This study is carried out to understand the movement of anions and heavy metals from the soils to the trees in both areas, the absorption of anions and heavy metals from atmosphere into leaves and the amounts of anions and heavy metals in leaves and fine roots(< 1mm dia.) of roadside trees and green space trees in Kwangju and trees in the yard of Forest Environment Institute of Chollanam-do. The tree species selected for this study in both areas are Ginkgo biloba, Quercus acutissima, Cedrus deodara, Platanus occidentalis, Robinia pseudoacacia, Alnus japonica. Metasequoia glyptostroboides. Zekova serrata. Prunus serrulata var. spontanea, and Pinus densiflora. The results of the study are as follows : 1. $SO{_4}^{-2}$, $NO{_3}^-$ and $Cl^-$ concentrations are higher in the soils of the urban area than in those of the rural area, and $NO{_3}^-$ and $SO{_4}^{-2}$ are higher in the leaves than in the roots due to the absorption of the these pollutants through the stomata. 2. Ginkgo biloba, Robinia pseudoacacia. Zekova serrata, Quercus acutissima, and Platanus occidentalis can be adequated to the roadside trees and the environmental trees due to their good absorption of $NO{_3}^-$ and $SO{_4}^{-2}$. 3. Heavy metals in the soils of both areas are in the order of Mn > Zn > V > Cr > Pb > Ni > Cu > Mo> Cd, and in the leaves and roots of the trees in the both areas are in the order of Mn>Zn>Cr>Cu>V>Ni. Both orders are similar ones except V. There are more in the urban soils than in the rural soils in amount of Mn, Zn, Pb, V, Cu. 4. It is supposed that there is no antagonism between Mn and Zn in this study. 5. Se, Co and As are not detected in the soils, the leaves and the roots in both areas. Sn, Mo, Cd and Pb are also not detected in the leaves and roots in spite of considerable amount in the soils of both areas.

  • PDF

The Effect of Root Zone Cooling at Night on Substrate Temperature and Physiological Response of Paprika in Hot Climate (고온기 야간시간 근권냉방이 파프리카 배지온도와 생리적 반응에 미치는 영향)

  • Choi, Ki Young;Ko, Ji Yeon;Choi, Eun Young;Rhee, Han Cheol;Lee, Sung Eun;Lee, Yong-Beom
    • Journal of Bio-Environment Control
    • /
    • v.22 no.4
    • /
    • pp.349-354
    • /
    • 2013
  • This study examined a technique for cooling root zone aimed at lowering substrate temperature for sweet pepper (Capsicum annum L. 'Orange glory') cultivation in coir substrate hydroponics during hot season, from the $16^{th}$ of July to $15^{th}$ of October in 2012. The root zone cooling technique was applied by using an air duct (${\varnothing}12$ cm, hole size 0.1 mm) to blow cool air between two slabs during night (5p.m. to 3a.m.). Between the $23^{rd}$ of July and $31^{st}$ of August (hot temperature period), average daily substrate temperature was $24.7^{\circ}C$ under the root zone cooling, whereas it was $28.2^{\circ}C$ under condition of no cooling (control). In sunny day (600~700 W $m^{-2}{\cdot}s^{-1}$), average substrate temperatures during the day (6a.m. to 8p.m.) and night (8p.m. to 6a.m.) were lower about $1.7^{\circ}C$ and $3.3^{\circ}C$, respectively, under the cooling treatment, compared to that of control. The degree of temperature reduction in the substrate was averagely $0.5^{\circ}C$ per hour under the cooling treatment during 6p.m. to 8p.m.; however, there was no decrease in the temperature under the control. The temperature difference between the cooling and control treatments was $1.3^{\circ}C$ and $0.6^{\circ}C$ in the upper and lower part of the slab, respectively. During the hot temperature period, about 32.5% reduction in the substrate temperature was observed under the cooling treatment, compared to the control. Photosynthesis, transpiration rate, and leaf water potential of plants grown under the cooling treatment were significantly higher than those under the control. The first flowering date in the cooling was faster about 4 days than in the control. Also, the number of fruits was significantly higher than that in the control. No differences in plant height, stem thickness, number of internode, and leaf width were found between the plants grown under the cooling and control, except for the leaf length with a shorter length under the cooling treatment. However, root zone cooling influenced negligibly on eliminating delay in fruiting caused by excessively higher air temperature (> $28^{\circ}C$), although the substrate temperature was reduced by $3^{\circ}C$ to $5.6^{\circ}C$. These results suggest that the technique of lowering substrate temperature by using air-duct blow needs to be incorporated into the lowering growing temperature system for growth and fruit set of health paprika.