• Title/Summary/Keyword: Green house gas(GHG)

Search Result 67, Processing Time 0.029 seconds

An Analysis on Korean Nuclear Power's Contribution to the GHG Emission Reduction and the Economic Effect (한국 원자력발전의 온실가스 저감 기여도 및 경제적 효과 분석)

  • Cho, Byung-Oke;Kim, Shin-Jong;Kim, Jum-Su
    • Journal of Energy Engineering
    • /
    • v.19 no.4
    • /
    • pp.203-214
    • /
    • 2010
  • This study is to assess the reduction of greenhouse gas emission and economic contribution by operating nuclear power plants in Korea. According to the results of applying greenhouse gas emission coefficients to the current nuclear power generation and the estimated nuclear power generation of national energy master plan, it is confirmed quantitatively that nuclear power contributes to reducing greenhouse gas emission, controlling inflation, and substituting import of fossil energies. For the reliable and cost-effective supply of energy and the active respondency to climate change, a continuous expansion of nuclear power is implied to be necessary.

Economic Analysis of GHG Emission Reduction Methodology in Pulp, Paper and Wood Industry Approved by Korea Voluntary Emission Reduction Program (온실가스배출 감축사업(KVER) 제지목재 분야 인증 감축방법의 경제성 분석)

  • Kim, Young Min;Song, Myung Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.1
    • /
    • pp.39-43
    • /
    • 2015
  • The Energy and Green House Gas target management system was launched by the Korean Government in 2010. The Korea Emission Trading System will start in 2015. Therefore, simultaneous pursuit of energy saving and greenhouse emission reduction through energy use rationalization is an important obligation of Korean engineers, who import about 97% of domestic energy consumption. Economic analysis of the GHG emission reduction methodologies registered and approved by Korea Voluntary Emission Reduction (KVER) program was conducted. The results for waste heat recovery employed in an energy intensive pulp, paper and wood industry were reported. The emission reduction intensities were 9.7 kg $CO_2$/ton_pulp production. Net Present Value analysis showed that the GHG emission reduction was economically beneficial with an internal rate return of 60%. The results of exergy analysis indicated that the second law efficiencies of waste heat recovery system employed in KVER program were 77.3% and 53.6%. NPV decreased as the exergy decreased.

A Study on CDM Possibility Assessment of Transport Sector (교통부문 청정개발체제(CDM) 사업화 가능성 평가)

  • Park, Jin Young;Kim, DongJun;Oh, Seung Hwoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.2D
    • /
    • pp.175-184
    • /
    • 2011
  • Transport sector takes charge of about 20 percent of energy consumption and GHG(Green House Gas) emission in Korea. One of the efficient strategy of reducing GHG is introducing CDM(Clean Development Mechanism), which is one of GHG reduction systems in Kyoto Protocol. Nowadays many tries have done to regist transport policies as CDM in transport sector, however, a lot of things should be investigated to regist CDM in advance. The aim of this paper is assessment of CDM possibility in transport sector. First of all, we review steps and criteria to CDM registration, and select 4 CDM possibility assessment index in transport sector: as follows additionality, methodology, emission calculation, and monitoring. Also, we analyze registed projects and methodologies in transport sector. To assess CDM possibility in transport sector, quantitative and qualitative assessments are carried out in this study. 18 transport policies are categorized as 4 groups and possibility of 18 transport policies are examined. Several policies can reduce GHG, however, they are not fit to regist as a CDM. On the contrary many transport policies have possibility to regist. In addition, we have done questionnaire survey, 'fuel change' policies have high possibility to CDM. However transport policies related to haman activity, like as TOD, have lower possibility. As a result, we can find that enough CDM possibility assessment should be carried out before CDM registration in transport sector.

A Study on the IMO Regulations regarding GHG Emission from Ships and its Implementation (선박기인 온실가스 배출에 대한 IMO의 규제와 이행방향)

  • Lee, Yun-Cheol;Doo, Hyun-Wook
    • Journal of Navigation and Port Research
    • /
    • v.35 no.5
    • /
    • pp.371-380
    • /
    • 2011
  • Traditionally, UNCLOS stipulates that States have the obligation and responsibility to protect and preserve the marine environment and exercise their rights in Principle of Non-Discrimination with respect to foreign ships visiting to port states. UNFCCC and Kyoto protocol established Common but Differentiated Responsibility as the basis which is established on the historic responsibility. The principle in which IMO is presently developing the regulations of Green House Gas emitted from ships is contradict with the principle of UNFCCC regime. In this paper, the development and the principle of UNFCCC and Kyoto protocol is surveyed and it provides the tendency of the IMO activities regarding GHG emission from ships. Also, through consideration of the problems and restrictions drawn from comparison between two principles, the conclusion suggests the fundamental theory and implementation means in order to carry out the purpose of IMO regulations in accordance with the principles of UNCLOS and IMO Convention.

A Study on the GHG Reduction Newest Technology and Reduction Effect in Power Generation·Energy Sector (발전 에너지 업종의 온실가스 감축 신기술 조사 및 감축효과 분석)

  • Kim, Joo-Cheong;Shim, So-Jung
    • Journal of Climate Change Research
    • /
    • v.4 no.4
    • /
    • pp.349-358
    • /
    • 2013
  • In this study, the newest technology available to reduce GHG emissions, which can be applicable in energy industries of the future that has large reduction obligations by energy target management and large intensity of GHG emissions, has been investigated by searching the technical characteristics of each technology. The newest technology to reduce GHG emissions in the field of power generation and energy can be mainly classified into the improvement of efficiency, CCS, and gas combined-cycle technology. In order to improve the reliability of the GHG emission factor obtained from the investigation process, it has been compared to the technology-specific GHG emission factor derived from the estimated amount of emissions. Then the GHG abatement measures, using the derived estimation of factor, by using the newest technology to reduce GHG emissions have been predicted. As a result, the GHG reduction rate by technology of CCS development has been expected to be the largest more than 30%, and the abatement rate by technology of coal gasified fuel cell and pressurized fluidized-bed thermal power generation has been showed more than 20%. If the effective introduction of the newest technology and the study of its characteristics is continued, and properly applied for future GHG emissions, it can be prospected that the national GHG reduction targets can be achieved in cost-efficient way.

A study of energy consumption and savings potential in wired network equipment (유선 네트워크 장비의 에너지 소모량과 절약 잠재성 연구)

  • Kim, Ki-Young;Suh, Yu-Hwa
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.12
    • /
    • pp.6469-6477
    • /
    • 2013
  • As the Internet has grown, energy consumption and GHG emission from internet use have become issues in recent years. On the other hand, such interest in greening the Internet has focused on edge devices, and there is a lack of deeper related studies of the energy wasted by excessive network-connectivity and the savings potential in wired network equipment. This study presents the background and reasonability of studies on the energy efficiency of wired networks in terms of the environment, economy and energy resources. The energy consumption and savings potential of network equipment were also estimated and the major factors of energy consumption was analyzed based on the data, and future studies for the Internet are presented.

Greenhouse Gas Reduction Effect of Improvement of Existing Landfill Gas(LFG) Production by Using Food Waste Water (음폐수 이용 기존 매립지 가스 발생 향상에 따른 온실가스 감축효과)

  • Shin, Kyounga;Dong, Jongin;Park, Daewon;Kim, Jaehyung;Chang, Wonsoek
    • Journal of Energy Engineering
    • /
    • v.25 no.3
    • /
    • pp.104-113
    • /
    • 2016
  • This study analyzes correlation between methane gas production and injection of food waste water to motivate to expand renewable energy as a way of GHG (Green House Gas) mitigation to achieve the national GHG target proposed for the climate agreement in Paris last year. Pretreatment of food waste water was processed with pH 6 at $35^{\circ}C$ and used the fixed-bed upflow type reactor with the porous media. As a result of operation of pilot-scaled bioreactor with food waste water, the methane gas production was 6 times higher than the methane gas production of control group with rain water. The average production of methane was $56{\ell}/day/m^3$ which is possible to produce $20m^3$ of methane in $1m^3$ of landfill. As a way of energy source, when it is applied to the landfill over $250,000m^3$, it is also able to achieve financial feasibility along with GHG reduction effect. GHG reductions of $250,000m^3$ scale landfill were assessed by registered CDM project and the annual amount of reductions was 40,000~50,000 $tCO_2e$.

An Experimental Study on GHG Emissions Reduction and Fuel Economy Improvement of Heavy-Duty Trucks by Using Aerodynamics Device Package (공기저항 저감장치 패키지를 이용한 대형화물차량의 연비개선 및 온실가스 저감효과에 관한 실험적 연구)

  • Park, Seungwon;Dong, Lang;Her, Chulhaeng;Yun, Byoeunggyu;Kim, Daewook
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.2
    • /
    • pp.207-218
    • /
    • 2017
  • Improving fuel consumption, particularly that of commercial vehicles, has become a global concern. The reduction in logistics cost has been a key issue in efforts to improve fuel economy and efficiency of transportation equipment. Typical technologies for reducing reduce fuel usage include air resistance reduction technologies, tire rolling resistance technologies, and idle technologies among others. Air resistance technology is a highly effective method that can be easily applied in a short period. As with air resistance technology, several devices involving side skirt, boat tail and gap fairing have been developed based on an analytical 3-D modeling technique for reducing air resistance attributed to the vehicle configuration. The devices were on a 45 feet tractor-trailer and the emission test was done using PEMS equipment. Fuel economy was evaluated by introducing several devices to reduce outer air resistance. The test was conducted by changing the experimental method of SAE J1321 Joint TMC/SAE Fuel Consumption Test Procedure - Type II test. As a result, air resistance decreased by at least 15 % and fuel economy improved by at least 13 %. This study sought to reduce greenhouse gas and improve fuel economy by applying several devices to a test vehicle to lower air resistance.

Evaluation of Green House Gases (GHGs) Reduction Plan in Combination with Air Pollutants Reduction in Busan Metropolitan City in Korea

  • Cheong, Jang-Pyo;Kim, Chul-Han;Chang, Jae-Soo
    • Asian Journal of Atmospheric Environment
    • /
    • v.5 no.4
    • /
    • pp.228-236
    • /
    • 2011
  • Since most Green House Gases (GHGs) and air pollutants are generated from the same sources, it will be cost-effective to develop a GHGs reduction plan in combination with simultaneous removal of air pollutants. However, effects on air pollutants reduction according to implementing any GHG abatement plans have been rarely studied. Reflecting simultaneous removal of air pollutants along with the GHGs emission reduction, this study investigated relative cost effectiveness among GHGs reduction action plans in Busan Metropolitan City. We employed the Data Envelopment Analysis (DEA), a methodology that evaluates relative efficiency of decision-making units (DMUs) producing multiple outputs with multiple inputs, for the investigation. Assigning each GHGs reduction action plan to a DMU, implementation cost of each GHGs reduction action plan to an input, and reduction potential of GHGs and air pollutants by each GHGs reduction action plan to an output, we calculated efficiency scores for each GHGs reduction action plan. When the simultaneous removal of air pollutants with the GHGs reduction were considered, green house supply-insulation improvement and intelligent transportation system (ITS) projects had high efficiency scores for cost-positive action plans. For cost-negative action plans, green start network formation and running, and daily car use control program had high efficiency scores. When only the GHGs reduction was considered, project priority orders based on efficiency scores were somewhat different from those when both the removal of air pollutants and GHGs reduction were considered at the same time. The expected action plan priority difference is attributed to great difference of air pollutants reduction potential according to types of energy sources to be reduced.

Analysis of the Relationships among Energy, Economic Growth and Greenhouse Gas Emissions Using Metropolitan City/Province Level Data (광역시·도별 자료를 이용한 에너지, 경제성장, 온실가스 배출 간의 관계 분석)

  • Lee, Jaeseok;Lee, Keun-Dae;Yu, Bok-Keun
    • Environmental and Resource Economics Review
    • /
    • v.30 no.3
    • /
    • pp.503-533
    • /
    • 2021
  • This paper analyzes the relationships among the energy consumption, renewable energy production, real gross regional domestic product(GRDP), and greenhouse gas(GHG) emissions. It uses the metropolitan city and province level data for Korea from 2010 to 2018, employing a panal vector autoregressive(VAR) model. We find that an increase in energy consumption has a limited impact on boosting renewable energy production or gross regional domestic product, while it leads to an increase in greenhouse gas emissions. A rise in renewable energy production can increase gross regional domestic product, but it has no meaningful effects on energy consumption and the reduction of green house gas emissions. Our finding indicates that it is crucial to expand the supply of renewable energy as well as to decrease energy consumption in order to achieve the goal of reducing greenhouse gas emissions and reaching economic growth.