• Title/Summary/Keyword: Green and blue water

Search Result 233, Processing Time 0.031 seconds

Transfer Efficiency of Underwater Optical Wireless Power Transmission Depending on the Operating Wavelength

  • Kim, Sung-Man;Kwon, Dongyoon
    • Current Optics and Photonics
    • /
    • v.4 no.6
    • /
    • pp.571-575
    • /
    • 2020
  • Optical wireless power transmission (OWPT) is a good candidate for long-distance underwater wireless power transmission. In this work we investigate the transmission efficiency of underwater OWPT, depending on the operating wavelength. We consider four operating wavelengths: infrared, red, green, and blue. We also consider the cases of pure water and sea water for the working conditions. Our results show that it is necessary to select the operating wavelength of underwater OWPT according to the transmission distance and water type of the target application.

Growth Characteristics of Blue-green Algae (Anabaena spiroides) Causing Tastes and Odors in the North-Han River, Korea (북한강 수계에서 이취미를 유발하는 남조류(Anabaena spiroides)의 증식 특성)

  • You, Kyung-A;Byeon, Myeong-Seop;Youn, Seok-Jea;Hwang, Soon-Jin;Rhew, Doug-Hee
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.1
    • /
    • pp.135-144
    • /
    • 2013
  • Blue-green algae blooms occurred during early winter in the North-Han River, Korea. Among blue-green algae, Anabaena spiroides were observed for approximately 33 consecutive days, between 28 November and 30 December, 2011. A. spiroides emerged from Lake Uiam to Lake Paldang, depending on the flow of the river has spread downstream. Changes of physical water environment like rising water temperature and increasing hydraulic retention time influenced the A. spiroides bloom. The A. spiroides bloom showed a very rapid increase in cell density, and a slow decrease: the cell density increased to a maximum of $11,325cells\;mL^{-1}$ in Lake Paldang (st. 5), and was completely disappeared after the water temperature dropped below $4^{\circ}C$. A decrease in water temperature was the most influential factor among all environmental parameters, for the reduction of A. spiroides cell density. The A. spiroides bloom was accompanied with the occurrence of very high concentrations of the odor metabolite geosmin. Geosmin reached the peak value of $1,640ng\;L^{-1}$ in Lake Paldang (st. 4). The geosmin concentration was very strongly correlated with cell numbers of A. spiroides.

Assessment & Estimation of Water Footprint on Soybean and Chinese Cabbage by APEX Model (APEX 모형을 이용한 밭작물(콩, 배추) 물발자국 영향 평가)

  • Hur, Seung-Oh;Choi, Soonkun;Hong, Seong-Chang
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.3
    • /
    • pp.159-165
    • /
    • 2019
  • BACKGROUND: The water footprint (WF) is an indicator of freshwater use that appears not only at direct water use of a consumer or producer, but also at the indirect water use. As an indicator of 'water use', the water footprint includes the green, blue, and grey WF, and differs from the classical measure of 'water withdrawal' because of green and grey WF. This study was conducted to assess and estimate the water footprint of the soybean and Chinese cabbage. METHODS AND RESULTS: APEX model with weather data, soil and water quality data from NAS (National Institute of Agricultural Sciences), and farming data from RDA (Rural Development Administration) was operated for analyzing the WF of the crops. As the result of comparing the yield estimated from APEX with the yield extracted from statistic data of each county, the coefficients of determination were 0.83 for soybean and 0.97 for Chinese cabbage and p-value was statistically significant. The WFs of the soybean and Chinese cabbage at production procedure were 1,985 L/Kg and 58 L/Kg, respectively. This difference may have originated from the cultivation duration. The WF ratios of soybean were 91.1% for green WF and 8.9% for grey WF, but the WF ratios of Chinese cabbage were 41.5% for green WF and 58.5% for grey WF. CONCLUSION: These results mean that the efficiency of water use for soybean is better than that for Chinese cabbage. The results could also be useful as an information to assess environmental impact of water use and agricultural farming on soybean and Chinese cabbage.

Decomposition of Microcystis sp. Cell and Formation of Chlorination Disinfection By-Products (Microcystis sp. Cell의 부패와 염소 소독부산물 생성)

  • Son, Hee-Jong;Yeom, Hoon-Sik;Jung, Jong-Mun;Choi, Jin-Taek
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.5
    • /
    • pp.351-358
    • /
    • 2012
  • Formation of disinfection by-products (DBPs) including trihalomethans (THM), haloacetic acid (HAA) and haloacetonitriles (HAN) from chlorination of extracellular organic matter (EOM) and cells + intracellular organic matter (IOM) of Microcystis sp., a blue-green algae, during decomposed period was investigated. Microcystis sp. cells + IOM and EOM of Microcystis sp. exhibited a high potential for DBP formation. HAAFP (formation potential) was higher than THMFP during decomposed period. In the variations of HAAFP species during decomposed period, the ratio of di-HAAFP species was gradually decreased and the ratio of tri-HAAFP species was gradually increased in the case of EOM during decomposed period, while the opposite result was in the case of cells + IOM during decomposed period. In the variations of HANFP species during decomposed period, the ratio of di-HANFP species was much higher than the ratio of tri-HAAFP species.

Application of hybrid material, modified sericite and pine needle extract, for blue-green algae removal in the lake

  • Choi, Hee-Jeong
    • Environmental Engineering Research
    • /
    • v.23 no.4
    • /
    • pp.364-373
    • /
    • 2018
  • The present study assessed the efficient removal of nutrients and Chlorophyll-a (Chl-a) by using methyl esterified sericite (MES) and pine needle extracts (PNE), a low cost and abundant green hybrid material from nature. For this purpose, the optimal conditions were investigated, such as the pH, temperature, MES and PNE ratio, and MES-PNE dose. In addition, a Microcystis aeruginosa control using MES-PNE was also analyzed with various inhibition models. The removal of the nutrient and Chl-a onto MES-PNE was optimized for over 95% removal as follows: 2-2.5 for the MES-PNE ratio, 7-8 pH and a $22-25^{\circ}C$ temperature. In this respect, approximately 1.52-2.20 g/L of MES-PNE was required to remove each 1 g of dry weight/L of Chl-a. Total phosphorus (TP) has a greater influence on the increase in Chl-a than total nitrogen (TN) according to the correlation between TN, TP and Chl-a. Moreover, the Luong model was the best model for fitting the biodegradation kinetics data from Chl-a on MES-PNE from lake water. The novel hybrid material MES-PNE was very effective at removing TN, TP and Chl-a from the lake and can be applied in the field.

Vegetation Monitoring using Unmanned Aerial System based Visible, Near Infrared and Thermal Images (UAS 기반, 가시, 근적외 및 열적외 영상을 활용한 식생조사)

  • Lee, Yong-Chang
    • Journal of Cadastre & Land InformatiX
    • /
    • v.48 no.1
    • /
    • pp.71-91
    • /
    • 2018
  • In recent years, application of UAV(Unmanned Aerial Vehicle) to seed sowing and pest control has been actively carried out in the field of agriculture. In this study, UAS(Unmanned Aerial System) is constructed by combining image sensor of various wavelength band and SfM((Structure from Motion) based image analysis technique in UAV. Utilization of UAS based vegetation survey was investigated and the applicability of precision farming was examined. For this purposes, a UAS consisting of a combination of a VIS_RGB(Visible Red, Green, and Blue) image sensor, a modified BG_NIR(Blue Green_Near Infrared Red) image sensor, and a TIR(Thermal Infrared Red) sensor with a wide bandwidth of $7.5{\mu}m$ to $13.5{\mu}m$ was constructed for a low cost UAV. In addition, a total of ten vegetation indices were selected to investigate the chlorophyll, nitrogen and water contents of plants with visible, near infrared, and infrared wavelength's image sensors. The images of each wavelength band for the test area were analyzed and the correlation between the distribution of vegetation index and the vegetation index were compared with status of the previously surveyed vegetation and ground cover. The ability to perform vegetation state detection using images obtained by mounting multiple image sensors on low cost UAV was investigated. As the utility of UAS equipped with VIS_RGB, BG_NIR and TIR image sensors on the low cost UAV has proven to be more economical and efficient than previous vegetation survey methods that depend on satellites and aerial images, is expected to be used in areas such as precision agriculture, water and forest research.

AI-based smart water environment management service platform development (AI기반 스마트 수질환경관리 서비스 플랫폼 개발)

  • Kim, NamHo
    • Smart Media Journal
    • /
    • v.11 no.9
    • /
    • pp.56-63
    • /
    • 2022
  • Recently, the frequency and range of algae occurrence in major rivers and lakes are increasing due to the increase in water temperature due to climate change, the inflow of excessive nutrients, and changes in the river environment. Abnormal algae include green algae and red algae. Green algae is a phenomenon in which blue-green algae such as chlorophyll (Chl-a) in the water grow excessively and the color of the water changes to dark green. In this study, a 3D virtual world of digital twin was built to monitor and control water quality information measured in ecological rivers and lakes in the living environment in real time from a remote location, and a sensor measuring device for water quality information based on the Internet of Things (IOT) sensor. We propose to build a smart water environment service platform that can provide algae warning and water quality forecasting by predicting the causes and spread patterns of water pollution such as algae based on AI machine learning-based collected data analysis.

Analysis of Paddy Rice Water Footprint under Climate Change Using AquaCrop (AquaCrop을 이용한 기후변화에 따른 미래 논벼 물발자국 변화 분석)

  • Oh, Bu-Yeong;Lee, Sang-Hyun;Choi, Jin-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.1
    • /
    • pp.45-55
    • /
    • 2017
  • Climate change causes changes in rainfall patterns, temperature and drought frequency. Climate change impact influences on water management and crop production. It is critical issue in agricultural industry. Rice is a staple cereal crop in South Korea and Korea uses a ponding system for its paddy fields which requires a significant amount of water. In addition, water supply has inter-relationship with crop production which indicates water productivity. Therefore, it is important to assess overall impacts of climate change on water resource and crop production. A water footprint concept is an indicator which shows relationship between water use and crop yield. In addition, it generally composed of three components depending on water resources: green, blue, grey water. This study analyzed the change trend of water footprint of paddy rice under the climate change. The downscaled climate data from HadGEM3-RA based on RCP 8.5 scenario was applied as future periods (2020s, 2050s, 2080s), and historical climate data was set to base line (1990s). Depending on agro-climatic zones, Suwon and Jeonju were selected for study area. A yield of paddy rice was simulated by using FAO-AquaCrop 5.0, which is a water-driven crop model. Model was calibrated by adjusting parameters and was validated by Mann-Whitney U test statistically. The means of water footprint were projected increase by 55 % (2020s), 51 % (2050s) and 48 % (2080s), respectively, from the baseline value of $767m^2/ton$ in Suwon. In case of Jeonju, total water footprint was projected to increase by 46 % (2020s), 45 % (2050s), 12 % (2080s), respectively, from the baseline value of $765m^2/ton$. The results are expected to be useful for paddy water management and operation of water supply system and apply in establishing long-term policies for agricultural water resources.

A Survey on the Actual Wearing Conditions of Fire Fighter's Uniform (한국 소방복의 착용만족도 및 착용자 의견에 관한 조사연구)

  • 정정숙;이연순
    • Journal of the Korean Home Economics Association
    • /
    • v.37 no.11
    • /
    • pp.75-83
    • /
    • 1999
  • To develope an efficient fire fighter’s uniform for the fire fighting work and body protection, this study examined the regulations of fire lighter’s uniform and surveyed the actual wearing conditions, satisfaction degree, preferred color and design others. The results are as follows; 1. As for the satisfaction degree, the degree was normal in ordinary, low in working uniform and heat-proof uniform and very low in water-proof uniform about its design, size, color and materials. 2. As for the color, red was preferred for the working uniform and water-proof uniform. Blue, yellow and green was preferred next for corking uniform and yellow and blue for water-proof uniform. 3. As for the design, fire fighters wanted partial revision of the present uniform. They preferred stretchy training wear style and overact style in order. For the water-proof uniform, they preferred hip-length suit and pants and next to it they liked flee-length suit, waist belt and overact in order. 4. As for the regulations of the uniform, they wanted some addition in casual uniform, water-proof pants and water-proof gloves, and some deletion in the thermal barrier of water-proof uniform and ordinary uniform. 5. As for the distribution of the uniforms, the use of coupons was highly preferred.

  • PDF

Evaluating Changes in Blue Carbon Storage by Analyzing Tidal Flat Areas Using Multi-Temporal Satellite Data in the Nakdong River Estuary, South Korea (다중시기 위성자료 기반 낙동강 하구 지역 갯벌 면적 분석을 통한 블루카본 저장량 변화 평가)

  • Minju Kim;Jeongwoo Park;Chang-Uk Hyun
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.2
    • /
    • pp.191-202
    • /
    • 2024
  • Global warming is causing abnormal climates worldwide due to the increase in greenhouse gas concentrations in the atmosphere, negatively affecting ecosystems and humanity. In response, various countries are attempting to reduce greenhouse gas emissions in numerous ways, and interest in blue carbon, carbon absorbed by coastal ecosystems, is increasing. Known to absorb carbon up to 50 times faster than green carbon, blue carbon plays a vital role in responding to climate change. Particularly, the tidal flats of South Korea, one of the world's five largest tidal flats, are valued for their rich biodiversity and exceptional carbon absorption capabilities. While previous studies on blue carbon have focused on the carbon storage and annual carbon absorption rates of tidal flats, there is a lack of research linking tidal flat area changes detected using satellite data to carbon storage. This study applied the direct difference water index to high-resolution satellite data from PlanetScope and RapidEye to analyze the area and changes of the Nakdong River estuary tidal flats over six periods between 2013 and 2023, estimating the carbon storage for each period. The analysis showed that excluding the period in 2013 with a different tidal condition, the tidal flat area changed by up to approximately 5.4% annually, ranging from about 9.38 km2 (in 2022) to about 9.89 km2 (in 2021), with carbon storage estimated between approximately 30,230.0 Mg C and 31,893.7 Mg C.