DOI QR코드

DOI QR Code

Growth Characteristics of Blue-green Algae (Anabaena spiroides) Causing Tastes and Odors in the North-Han River, Korea

북한강 수계에서 이취미를 유발하는 남조류(Anabaena spiroides)의 증식 특성

  • You, Kyung-A (Water Environment Research Department, National Institute of Environmental Research, Environmental Research Complex) ;
  • Byeon, Myeong-Seop (Han River Environment Research Center, National Institute of Environmental Research) ;
  • Youn, Seok-Jea (Han River Environment Research Center, National Institute of Environmental Research) ;
  • Hwang, Soon-Jin (Department of Environmental Science, Konkuk University) ;
  • Rhew, Doug-Hee (Water Environment Research Department, National Institute of Environmental Research, Environmental Research Complex)
  • 유경아 (국립환경과학원 물환경연구부) ;
  • 변명섭 (국립환경과학원 한강물환경연구소) ;
  • 윤석제 (국립환경과학원 한강물환경연구소) ;
  • 황순진 (건국대학교 환경과학과) ;
  • 류덕희 (국립환경과학원 물환경연구부)
  • Received : 2012.07.17
  • Accepted : 2013.03.01
  • Published : 2013.03.31

Abstract

Blue-green algae blooms occurred during early winter in the North-Han River, Korea. Among blue-green algae, Anabaena spiroides were observed for approximately 33 consecutive days, between 28 November and 30 December, 2011. A. spiroides emerged from Lake Uiam to Lake Paldang, depending on the flow of the river has spread downstream. Changes of physical water environment like rising water temperature and increasing hydraulic retention time influenced the A. spiroides bloom. The A. spiroides bloom showed a very rapid increase in cell density, and a slow decrease: the cell density increased to a maximum of $11,325cells\;mL^{-1}$ in Lake Paldang (st. 5), and was completely disappeared after the water temperature dropped below $4^{\circ}C$. A decrease in water temperature was the most influential factor among all environmental parameters, for the reduction of A. spiroides cell density. The A. spiroides bloom was accompanied with the occurrence of very high concentrations of the odor metabolite geosmin. Geosmin reached the peak value of $1,640ng\;L^{-1}$ in Lake Paldang (st. 4). The geosmin concentration was very strongly correlated with cell numbers of A. spiroides.

본 연구는 청정수역으로 알려져 있던 북한강 수계에서 저수온기에 우점한 남조류 Anabaena spiroides 현존량과 이취미 물질인 지오스민 (geosmin)에 대해 조사하고 환경인자와의 통계적 분석을 통하여 A. spiroides의 증식 특성을 알아보고자 하였다. 2011년 11월 말에 A. spiroides가 과다증식하였는데 출현지역은 의암호 내의 공지천 유입부 부터 하류의 팔당호까지 그 범위가 넓고 하류로 확산되는 특성을 보였다. 저수온기에 수온 상승과 체류시간 증가 등의 물리학적 수환경 변화가 남조류 A. spiroides의 과다증식에 영향을 미쳤다. A. spiroides 현존량은 팔당호에서 $11,325cells\;mL^{-1}$로 최대증식을 보였으며, 수온이 $4^{\circ}C$ 이하로 내려가면서 A. spiroides 현존량이 급격히 감소하였다. 수환경 요인 중에서 수온 하강이 A. spiroides 현존량 감소에 가장 큰 영향을 준 인자였다. 남조류의 대사물질로 이취미의 원인물질인 Geosmin은 팔당호에서 최대 $1,640ng\;L^{-1}$ 농도를 나타냈다. 북한강 수계에서 Geosmin 농도는 A. spiroides와 매우 유의한 상관관계를 보여 A. spiroides에 의해 이취미가 유발되었음을 시사하였다.

Keywords

References

  1. Aoyama, K., N. Kawamura, M. Saitoh, Y. Magara and Y. Ishibashi. 1995. Interactions between bacteria-free Anabaena macrospora clone and bacteria isolated from unialgal culture. Water Science and Technology 31: 121-126. https://doi.org/10.1016/0273-1223(95)00465-Y
  2. APHA. 2005. Standard methods for the examination of water and wastewater, 21st ed. American Public Health Association. Washington, D.C. USA.
  3. Blevins, W.T., K.K. Schrader and I. Saadoun. 1995. Comparative physiology of geosmin production by Streptomyces halstedii and Anabaena sp. Water Science and Technology 31: 127-133.
  4. Bowmer, K.H., A. Padovan, R.L. Oliver, W. Korth and G.G. Ganf. 1992. Physiology of geosmin production by Anabaena circinalis isolated from the Murrumbidgee River, Australia. Water Science and Technology 25: 259-267.
  5. Carpenter, S.R. and J.R. Kitchell. 1993. Cascading trophic interactions and lake productivity. Bioscience 35: 634-639.
  6. Chung, J. 1993. Illustration of the freshwater phytoplankton of Korea. Academybook.
  7. Chung, Y.H. 1968. Illustrated encyclopedia of fauna & flora of Korea Vol. 9 freshwater algae. Ministry of education.
  8. Fujimoto, N. and R. Sudo. 1997. Nutrient-limited growth of Microcystis aeruginosa and Phormidium tenue and competition under various N:P supply ratios and temperatures. Limnology Oceanography 42: 250-256. https://doi.org/10.4319/lo.1997.42.2.0250
  9. Hayes, K.P. and M.D. Burch. 1989. Odorous compounds associated with algal blooms in South Australian waters. Water Research 23: 115-121. https://doi.org/10.1016/0043-1354(89)90069-9
  10. Izaguirre, G., C.J. Hwang, S.W. Krasner and M.J. McGuire. 1982. Geosmin and 2-methylisoborneol from cyanobacteria in three water supply systems. Applied and Environmental Microbiology 43: 708-714.
  11. Jones, G.J. and W. Korth. 1995. In situ production of volatile odor compounds by river and reservoir phytoplankton populations in Australia. Water Science and Technology 31: 145-153.
  12. Khan, F. and A. Ansari. 2005. Eutrophication: An ecological vision. Botanical Review 71: 449-482. https://doi.org/10.1663/0006-8101(2005)071[0449:EAEV]2.0.CO;2
  13. Kim, H.S., D.S. Kong and S.J. Hwang. 2005a. Characteristic community dynamics of phyto- and zooplankton in a shallow eutrophic reservoir. Korean Journal of Limnology 38(1): 18-29.
  14. Kim, H.S., S.J. Hwang and D.S. Kong. 2007. Cyanobacterial development and succession and affecting factors in a eutrophic reservoir. Korean Journal of Limnology 40(1): 121-129.
  15. Kim, J.K., S.H. Lee, H.H. Bang and S.O. Hwang. 2009. Characteristics of algae occurrence in Lake Paldang. Journal of the Korean Society of Environmental Engineers 31(5): 325-331.
  16. Kim, J.M., M.S. Han, W.H. Jheong and J.D. Park. 2005b. Correlation between phytoplankton dynamics and water quality in Paldang Reservoir. Korean Journal of Limnology 38(2): 217-224.
  17. Komarek, J. 1991. A review of water-bloom forming Microcystis species with regard to populations from Japan. Archiv für Hydrobiologie Supplement, Algological Studies 64: 115-127.
  18. Konopka, A.E., A.R. Klemer, A.E. Walsby and B.W. Ibelings. 1993. Effects of macronutrients upon buoyancy regulation by metalimnetic Oscillatoria agardhii in Deming Lake, Minnesota. Journal of Plankton Research 15: 1019-1034. https://doi.org/10.1093/plankt/15.9.1019
  19. Li, Z., J. Yu, M. Yang, J. Zhang, M.D. Burch and W. Han. 2010. Cyanobacterial population and harmful metabolites dynamics during a bloom in Yanghe Reservoir, North China. Harmful Algae 9: 481-488. https://doi.org/10.1016/j.hal.2010.03.003
  20. Mahmood, N.A., W.W. Carmichael and D. Pfahler.1988. Anticholinesterase Poisonings in Dogs from a Cyanobactererial (Blue-Green Algae) Bloom Dominated by Anabaena flosaquae. American Journal of Veterinary Research 49(4): 500-503.
  21. McGuire, M.J., R.M. Jones, E.G. Means, G. Izaguirre and A.E. Preston. 1984. Controlling Attached Blue-Green Algae with Copper Sulfate. Joural of American Water Works Association 76(5): 60-65.
  22. Ministry of environment (MOE). 2007. Standard methods for the examination water quality.
  23. Ministry of environment (MOE). 2011. Drinking water quality monitoring guideline.
  24. National institute of environmental research (NIER). 2008. Study on the alert criteria of harmful algal bloom alert system ( I ).
  25. Park, H.K. and W.H. Jheong. 2003. Long-term changes of algal growth in Lake Paldang. Journal of Korean Society on Water Quality 19(6): 673-684.
  26. Park, H.K., M.S. Byeon, E.K. Kim, H.J. Lee, M.J. Chun and D.I. Jung. 2004. Water quality and phytoplankton distribution pattern in upper inflow rivers of Lake Paldang. Journal of Korean Society on Water Quality 20(6): 615-624.
  27. Park, H.K., H.J. Lee, E.K. Kim and D.I. Jung. 2005. Characteristics of algal abundance and statistical analysis of environmental factors in Lake Paldang. Journal of Korean Society on Water Quality 21(6): 584-594.
  28. Paerl, H.W., R.S. Fulton 3rd, P.H. Moisander and J. Dyble. 2001. Harmful freshwater algal blooms, with an emphasis on cyanobacteria. Scientific World Journal 1: 76-113.
  29. Reynolds, C.S. 1984. Phytoplankton periodicity: the interactions of form, function and environmental variability. Freshwater Biology 14: 111-142. https://doi.org/10.1111/j.1365-2427.1984.tb00027.x
  30. Romo, R. and R. Miracle. 1994. Long-term phytoplankton changes in a shallow hypertrophic lake, Albufera of Valencia Spain. Hydrobiologia 275(276): 153-164.
  31. Rosen, B.H., B.W. MacLeod and M.R. Simpson. 1992. Accumulation and release of geosmin during the growth phases of Anabaena circinalis (Kutz.) Rabenhorst. Water Science and Technology 25: 185-190.
  32. Saadoun, I., K.K. Schrader and W.T. Blevins. 2001. Identification of geosmin as a volatile metabolite of Anabaena sp. Journal of Basic Microbiology 41: 51-55. https://doi.org/10.1002/1521-4028(200103)41:1<51::AID-JOBM51>3.0.CO;2-R
  33. Sommer, U., Z.M. Gliwicz, W. Lampert and A. Duncan. 1986. The PEG-model of seasonal succession of planktonic events in fresh waters. Archiv fuer Hydrobiologie 106: 433-471.
  34. Tang, E.P.Y., R. Tremblay and W.F. Vincent. 1997. Cyanobacterial dominance of polar freshwater ecosystems: Are high-latitude mat-formers adapted to low temperature. Journal of Phycology 33: 171-181. https://doi.org/10.1111/j.0022-3646.1997.00171.x
  35. Thomas, R.H. and A.E. Walsby. 1986. The effects of temperature on recovery of buoyancy by Microcystis. Journal of General Microbiology 132: 1665-1672.
  36. Tsujimura, S. and T. Okubo. 2003. Development of Anabaena blooms in a small reservoir with dense sediment akinete population, with special reference to temperature and irradiance. Journal of Plankton Research 25: 1059-1067. https://doi.org/10.1093/plankt/25.9.1059
  37. Van Apeldoorn, M.E., H.P. van Egmond, G.J.A. Speijers and G.J.I. Bakker. 2007. Toxins of cyanobacteria. Molecular Nutrition & Food Research 51: 7-60. https://doi.org/10.1002/mnfr.200600185
  38. Van der Westhuizen, A.J. and J.N. Eloff. 1985. Effect of temperature and light on the toxicity and growth of the bluegreen alga Microcystis aeruginosa (UV-006). Planta 163: 55-59. https://doi.org/10.1007/BF00395897
  39. Vincent, W.F. and S.J. Dryden. 1989. Phytoplankton Succession and Cyanobacterial Dominance in a Eutrophic Lake of the Mid-Temperate Zone (Lake Okaro, New Zealand). Archiv für Hydrobiologie, Ergebnisse der Limnologie 32: 137-163.
  40. Wang, S.H., A.R. Dzialowski, J.O. Meyer, F. de Noyelles, N.C. Lim, W.W. Spotts and D.G. Huggins. 2005. Relationships between cyanobacterial production and the physical and chemical properties of a Midwestern Reservoir, USA. Hydrobiologia 541: 29-43. https://doi.org/10.1007/s10750-004-4665-x
  41. Watanabae, M.F. and S. Oishi. 1985. Effects of environmental factors on toxicity of a cyanobacterium (Microcystis aeruginosa) under culture conditions. Applied and Environmental Microbiology 49: 1342-1344.
  42. Watson, S.B. 2004. Aquatic taste and odor: a primary signal of drinking-water integrity. Journal of Toxicology and Environmental Health, Part A 67: 1779-1795. https://doi.org/10.1080/15287390490492377
  43. Watson, S.B., M. Charlton, Y.R. Rao, T. Howell, J. Ridal, B. Brownlee, C. Marvin and S. Millard. 2007. Off flavours in large waterbodies: physics, chemistry and biology in synchrony. Water Science and Technology 55: 1-8.
  44. Whelton, A.J. and A.M. Dietrich. 2004. Relationship between intensity concentration and temperature for drinking water odorants. Water Research 38: 1604-1614. https://doi.org/10.1016/j.watres.2003.11.036
  45. Wnorowski, A.U. and W.E. Scott. 1992. Incidence of off-flavors in South-African surface waters. Water Science and Technology 25: 225-232.
  46. Wu, J.T., P.I. Ma and T.L. Chou. 1991. Variation of geosmin content in Anabaena cells and its relation to nitrogen utilization. Archives of Microbiology 157: 66-69.
  47. Youn, S.J., H.K. Park and K.A. Shin. 2010. Dynamics of phytoplankton communities of major dam reservoirs in Han River system. Journal of Korean Society on Water Quality 26(2): 317-325.