• Title/Summary/Keyword: Green Soil

Search Result 1,156, Processing Time 0.026 seconds

Rooftop Vegetable Garden for Green Roof System (옥상 텃밭용 채소를 이용한 인공지반 녹화연구)

  • Ha, Yoo Mi;Kim, Dong-Yeob;Gu, Kyung Hee;Hwang, Dong Kyu;Park, Hee Ryung;Yun, Seong Jin
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.14 no.1
    • /
    • pp.77-88
    • /
    • 2011
  • This study was carried out to investigate the effects of soil depth and planting density on the growth of lettuce, crown daisy, and strawberry on a rooftop condition using artificial soil as a growth media. The vegetable crops showed better growth for plant height (cm), plant width (cm), plant fresh weight (g), and Fo, Fm and Fv/m on 20cm depth soil than 10cm depth soil except strawberry. Planting density of $16/m^2$ and $64/m^2$ did not show significant differences on the growth of the crops. Soil moisture content and EC were low for 10cm depth soil in lettuce plots, whereas there was no significant differences on soil moisture and EC between two soil depth in strawberry plots. Hunter's L, a, and b values showed the leaf color of lettuce dark green on 20cm depth soil and reddish on 10cm depth soil. Results showed that soil depth suitable for crop growth on rooftop conditions was 20cm rather than 10cm. Growth response of the crops showed no significant difference between $16/m^2$ and $64/m^2$, indicating that planting density of 64 $plants/m^2$ could be practiced on rooftop conditions. Lettuce growth rapidly changed in control treatment in which leaves were not pinched out, while slowly changed in plants which leaves were periodically pinched out. In the case of control plot, it was impossible to harvest because withering of lower leaves after blossom on June 22. The plant of crown daisy in which pinching was not conducted, blossomed on June 7, and the plants were removed since its aesthetical value was lost. Strawberry seemed to be a suitable vegetable crop for rooftop conditions based on its high covering rate and extended growth period until late October. The soil depth 20cm and planting density 64 $plants/m^2$ were suitable for vegetable crops on green roof system using artificial soil.

The Effect of Agricultural Wastes on Rice Plant Growth (답토양(畓土壤)의 유기물(有機物) 시용효과(施用效果))

  • Lee, Sang-Kyu;Park, Jun-Kyu
    • Applied Biological Chemistry
    • /
    • v.27
    • /
    • pp.56-67
    • /
    • 1984
  • As in many other country, the use of organic matter in Korea has long history. Farmers understand the value of organic matter as the source of plant nutrient and soil improving agent in general. Since 50 years ago, the sources of organic matter in paddy soils were compost, rice and barly straw, green manure, animal waste, fish and beancake, etc.. Application of green manures such as vetch and chinese milk vetch showed no significant effect on the yield of brown rice in paddy soil. On the other hand, the effects of compost and rice straw showed more significant on the yield of brown rice in paddy soil. Application of rice straw in rice cultivation is commonly made at different times between harvest, early spring and several weeks before transplanting. Considering the suitable paddy soil for application of rice straw under well to moderately well drained soil, the yield was pronounced more than poorly drained soil. Based on laboratory and field experimants, application of rice straw promoted the decrease of oxidation-reduction potential in well to moderately well drained soil. This results to be enhanced the release of some mineral nutrients,. such as potassium, calcium, silicon, and increase of availability of soil phosphorus. In the field experiments, results obtained from nitrogen fraction on the immobilization-mineralization of the tracer nitrogen applied in paddy soil,the amount and index of organic nitrogen incoporated in soil was more pronounced in rice straw application than control. Rice straw and its transformation products incoporated in the soil, provided the inflow of energy necessary to maintain heterotrophic microbes activities. Rice straw and its transformation products, especially soluble carbohydrate, enhanced the population of free-living heterotrophic $N_2$ - fixing microbes. Moreover, rice straw and its transformation products in paddy soil, enhanced the activities of soil enzymes such as dehydrogenase and urease.

  • PDF

Effects of Soil Organic Amendment as Plant Growing Media Component for Restoration of Planting Ground (식재기반 복원을 위한 유기질계 토양개량재의 효용성)

  • Ju, Jin-Hee;In, Da-Young;Kim, Won-Tae;Yoon, Young-Han;Choi, Eun-Young
    • Journal of Environmental Science International
    • /
    • v.24 no.11
    • /
    • pp.1363-1370
    • /
    • 2015
  • This study was aimed to determine effects of soil organic amendment as plant growing media component on restoration of planting ground. The changes of soil physical and chemical properties and germination and growth of kentucky bluegrass (Poa pratensis L.) were investigated. For treatments, soil was excavated at depth of 0-50 cm (referred as $S_1$) and at depth of 50-100 cm (referred as $S_2$). Then the half amount of $S_1$ soil was mixed with the soil organic amendment (coir dust 40% (v/v), bottom ash 25%, leaf mold 25%, vermiculite 5%, carbonized rice hull 5%) at a rate of 6% (v/v) (referred as $S_1CC$) and also the half amount of $S_2$ soil was mixed with the soil organic amendment at a rate of 6% (v/v) (referred as $S_2CC$) on pot in a 16 cm diameter and 14 cm height. The experiment was replicated 3 times with 3 pots per replication in randomized block design, and 100 seeds were planted per pot. In results, there was no significant difference in soil pH among the treatments with a slight decrease in soil hydraulic conductivity. However, in the $S_1CC$ treatment, positive increases in soil chemical properties, including electrical conductivity, organic matter, phosphoric acid, total nitrogen, exchangeable cation, and cation exchange capacity. Also, the germination rate, plant height, and number of leaves were higher in the $S_1CC$ treatment than those in other treatments. These results suggest that the addition of organic amendment to the soil at depth of 0-50 cm might be proper for restoring planting ground.

Effects of Rhizobium Inoculant, Nitrogen, Phosphorus, and Molybdenum on Nodulation, Yield, and Seed Protein in Pea

  • Rabbani M. G.;Solaiman A. R. M.;Hossain K. M.;Hossain T.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.2
    • /
    • pp.112-119
    • /
    • 2005
  • The effects of Rhizobium inoculant, nitrogen, phosphorus, and molybdenum on nodulation, dry matter production, yield attributes, pod and seed yields, protein and phosphorus contents in seed of pea (pisum sativum) var. IPSA Motorshuti-3 were assessed by a field experiment. Among the treatments Rhizobium inoculant in combination with 25kg P and 1.5kg Mo/ha performed best in recording number of nodules/plant, total dry matter yield, number of pods/plant, number of seeds/pod, 1000-seed weight, green pod yield, green and mature seed yields of pea. The highest green pod yield of 15.37 t/ha ($97.05\%$ increase over control) and green seed yield of 9.6t/ha ($69.31\%$ increase over control) were obtained by inoculating pea with Rhizobium inoculant in association with 25kg P and 1.5 Mo/ha. The effects of 60 or 120kg N/ha were comparable to Rhizobium inoculant in most cases. There were positive correlations among yield attributes, yield, protein and phosphorus contents in seeds of pea. From the viewpoint of yield attributes, yield, and seed quality, application of Rhizobium inoculant along with 25kg P and 1.5kg Mo/ha was considered to be the balanced combination of nutrients for achieving the maximum output from cultivation of pea in Shallow-Red Brown Terrace Soil of Bangladesh.

Effect of Green Manure Hairy vetch on Rice Growth and Saving of Irrigation Water (녹비작물 헤어리베치가 벼 생육 및 관개량 절약에 미치는 효과)

  • Jeon, Weon-Tai;Hur, Seung-Oh;Seong, Ki-Yeong;Oh, In-Seok;Kim, Min-Tae;Kang, Ui-Gum
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.2
    • /
    • pp.181-186
    • /
    • 2011
  • Green manure crops are primarily used to reduce the application of chemical fertilizers. In this study, a two-year field experiment was conducted to evaluate the effects of green manure hairy vetch on rice growth and saving of irrigation water. This experiment was conducted at Sinheung series (fine loamy, mixed, nonacid, mesic family of Fluvaquentic Endoaquepts) from 2008 to 2009 at the National Institute of Crop Science (NICS), RDA, Suwon, Gyeonggi province, Korea. Hairy vetch as a green manure crop was incorporated in soil for rice cultivation. Chemical fertilizers had not been applied to hairy vetch plot. Treatments included once irrigation (OI) per week and conventional irrigation (CI). In 2008, the water use efficiency of OI increased by 46% compared to CI by hairy vetch application during rice cultivation season (water treatments were started 38 days after rice transplanting). In 2009, the water use efficiency of OI increased by 61.3% compared to CI by hairy vetch application during rice cultivation season (water treatments were started 30 days after rice transplanting). Soil physical properties such as bulk density, soil porosity ratio and glomalin contents were improved by the incorporation of hairy vetch. The rice yield of OI water management was not significantly different from those of CI water management by hairy vetch application both years. These results suggest that the OI water management with hairy vetch incorporated in soil for rice cultivation can be used in rice fields to reduce the amount of irrigation water and chemical fertilizer.

The Role of Cover Material in Soil Water Retention and Growth of Tropaeolum majus and Fragaria spp. by Vertical Farming using Hanging Baskets in Urban Agriculture (도시농업을 위한 저관리 용기형 수직녹화에서 피복재가 토양수분 및 한련화와 딸기의 식물생장에 미치는 영향)

  • Ju, Jin-Hee;Yang, Ji;Park, Ju-Young;Yoon, Yong-Han
    • Journal of Environmental Science International
    • /
    • v.27 no.5
    • /
    • pp.291-297
    • /
    • 2018
  • Vertical farming systems offer many advantages in urban spaces. They have also been proposed as an engineering solution to increase the productivity per unit area of cultivated land by extending crop production in the vertical dimension. However, soil water retention is a major constraint affecting the plant environment. This study analyzed the effects of growth environment of Tropaeolum majus and Fragaria spp., on the vertical farming system, by using four different types of cover material types including sphagnum moss (Control), a shading net (S.N.), multi-layered fabric (M.L.F.), and non-woven fabric (N.W.F.). The volumetric soil moisture contents and plant characteristics were investigated from May to September 2014. Plant materials were individually cultivated in hanging baskets measuring $30{\times}17{\times}17cm$, filled with a mixture of soil and perlite, and placed at 1.5m height. Each treatment was performed in quadruplicate and consisted of five plants, amounting to a total of 20 plants. The analysis indicated that different covers were associated with multiple functions and soil water retention improvements may have a positive impact on the vertical farming system. The difference in soil water retention increased in the following order: M.L.F. > Control > N.W.F. > S.N.. Furthermore, the differences in plant height and survival rate increased in the following order: M.L.F. > Control > N.W.F. > S.N. Therefore, M.L.F yielded satisfactory good response for the vertical farming system of cover materials. Our results clearly demonstrate that vertical spaces represent an attractive alternative to urban farming and suggest that further increases in yield may be achieved via different cover materials in vertical farming using hanging baskets.

Restoration planning of the Seoul Metropolitan area, Korea toward eco-city

  • Lee, Chang Seok
    • Proceedings of the Korea Society of Environmental Biology Conference
    • /
    • 2003.06a
    • /
    • pp.1-5
    • /
    • 2003
  • In order to prepare a basis for ecological restoration of the Seoul Metropolitan area, ecological diagnoses on soil physico-chemical properties and vegetation structure were carried out. Land use patterns, actual vegetation, and biotope patterns were also investigated based on aerial photograph interpretation and field checks. I formulated landscape elements overlaying those data and evaluated the ecological value of each element. Soil pollution was evaluated by analyzing soil samples collected in each grid on the mesh map, divided by 2km $\times$ 2km intervals. Soil samples were collected in forests or grasslands escaped from direct human interference. Soil pollution evaluated from pH, and SO$_4$, Ca, Mg, and Al contents of soil was more severe in the urban outskirts than in the urban center. Those soil environmental factors showed significant correlation with each other. Vegetation in the urban area was different in species composition from that in suburban areas and showed lower diversity compared with that in the suburban areas. Successional process investigated by population structure of major species also showed a difference. That is, successional trend was normal in suburban areas, but that in urban areas showed a retrogressive pattern. The landscape ecological map of Seoul indicates that the urban center lacks vegetation and greenery space is restricted in urban outskirts. Such an uneven distribution of vegetation has caused a specific urban climate and thereby contributed to aggravation of air and soil pollution, furthermore causing vegetation decline. From this result, it was estimated that such uneven distribution of vegetation functioned as a trigger factor to deteriorate the urban environment. I suggested, therefore, a restoration plan based on landscape ecological principles, which emphasizes connectivity and even distribution of green areas throughout the whole area of the Seoul to solve this complex environmental problem. In this restoration plan, first of all, I decided the priority order for connection of the fragmented greenery spaces based on the distances from the core reserves comprised of green belt and rivers, which play roles as habitats of wildlife as well as for improvement of urban environment. Next, I prepared methods to restore each landscape element included in the paths of green network to be constructed in the future on the bases of such preferential order. Rivers and roads, which hold good connectivity, were chosen as elements to play important roles in constructing green network by linking the fragmented greenery spaces.

  • PDF

Assessment of Plant Growth and Soil Properties of Extensive Green Roof System for Rhododendron indicum Sweet (영산홍을 이용한 저관리 옥상녹화 시스템의 식물생육 및 토양특성 평가)

  • Kim, In-Hea;Huh, Keun-Young;Shin, Hyeon-Cheol;Park, Nam-Chang
    • Horticultural Science & Technology
    • /
    • v.28 no.6
    • /
    • pp.1057-1065
    • /
    • 2010
  • Recent urban concerns over environmental problems have furthered interest in green roof system. Plant growth and load bearing capacity of an underlying roof are key factors to determine an optimal system. This study was carried out to develop an optimal extensive green roof system for shrubs assessing the effects of substrate type and soil depth on the growth of $Rhododendron$ $indicum$ Sweet. in the experimental systems with different soil types and depths from 2001 to 2008. Substrate types of perlite alone and blended with sandy loam (v/v, 1:1) were used on the experimental systems with depths of 30 cm, 45 cm, and 60 cm. The survival rate of the plants on the perlite alone + 45 cm soil depth system (RS-A-45) was 100% during the experimental period, while those on the perlite alone + 30 cm soil depth system (RS-A-30) and perlite blended + 60 cm soil depth system (RS-B-60) showed 33% and 67%, respectively, in 2008. The overall plant growth and soil properties of RS-A-45 were superior to the others. At 8 years after installation, the total weight of RS-A-45 including plant fresh weight was about $376.6kg{\cdot}m^{-2}$ in field capacity indicating RS-A-45 can be optimal extensive and light weight green roof system.

Effect of Soil Texture and Tillage Method on Rice Yield and Methane Emission during Rice Cultivation in Paddy Soil

  • Cho, Hyeon-Suk;Seo, Myung-Chul;Kim, Jun-Hwan;Sang, Wan-gyu;Shin, Pyeong;Lee, Geon Hwi
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.564-571
    • /
    • 2016
  • As the amount of rice straw collected increases, green manure crops are used to provide the needed organic matter. However, as green manure crops generate methane in the process of decomposition, we tested with different tillage depths in order to reduce the emission. The atmosphere temperature of the chamber was $25{\sim}40^{\circ}C$ during the examination of methane and soil temperature was $2{\sim}10^{\circ}C$ lower than air temperature. The redox potential (Eh) of the soil drastically fell right before irrigated transplanting and showed -300~-400 mV during the cultivating period of rice (7~106 days after transplant). When hairy vetch was incorporated to soil and the field was not irrigated, the generation of methane did not occur from 12 to 4 days before transplanting rice and started after irrigation. Regarding the pattern of methane generation during the cultivation of rice, methane was generated 7 days after transplanting, reached the pinnacle at by 63~74 days after transplanting, rapidly decreased after 86~94 days past transplanting and stopped after 106 days past transplanting. When tested by different soil types, methane emission gradually increased in loam and clay loam during early transplant, whereas it sharply increased in sandy loam. The total amount of methane emitted was highest in sandy loam, followed by loam and clay loam. In all three soil types, methane emission significantly reduced when tillage depth was 20 cm compared to 10 cm. The rice growths and yield were not affected by tillage depth. Therefore, reduction of methane emission could be achieved when application hairy vetch to the soil with tillage depth of 20 cm in paddy soil.

Effects of Incorporation of Green Manure Crops on Growth and Quality in Cynanchum wilfordii Hemsley (녹비작물 토양환원이 백수오 생육 및 품질에 미치는 영향)

  • Youn, Cheol Ku;Kim, Ki Hyun;Kim, In Jae;Hong, Song Taeg;Hong, Eui Yon;Kim, Young Kuk
    • Korean Journal of Medicinal Crop Science
    • /
    • v.25 no.2
    • /
    • pp.115-120
    • /
    • 2017
  • Background: The study aimed to obtain data on the effects of cultivation and soil reduction of green manure crop on the quantity and quality of organically cultivated Cynanchum wilfordii Hemsley. Methods and Results: The experiment comprised four treatments: control, hairy vetch, barley, and hairy vetch + barley (3 : 2). The plant height in the hairy vetch treatment (86.3 cm) was significantly different from that in the other treatments, whereas the stem diameter leaf area, and special product analysis division (SPAD) value did not differ across the treatments. The largest soil reduction of green manure crop was recorded in the barley treatment (440 kg/10 a), whereas the smallest was recorded in the single treatment with hairy vetch (80 kg/10 a). The hairy vetch + barley (60 : 40) treatment showed 63% more soil microorganisms than control. Radical scavenging activity estimation revealed that the total polyphenol content was highest (1,740 mg/kg), and the 2,2-diphenyl-1-picrylhydrazyl (DPPH) was 92.6% in the barley treatment. The 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) activation was highest in the control (51.1%), and the root yield was the highest in the barley treatment (310 kg/10 a). Conclusions: The root yield, total polyphenol content, and antioxidant activity of Cynanchum wilfordii (Maxim.) Hemsley increased in presence of the green manure crop barley.