• Title/Summary/Keyword: Green Slope

Search Result 157, Processing Time 0.022 seconds

A study on Restoration Plan of Cultural Forest and Change of $Pinus$ $densiflora$ Forest in Inwangsan(Mt.), Seoul (인왕산 소나무림의 경관변화와 문화경관림 복원방안 연구)

  • Cho, Jun-Soo;Lee, Kyong-Jae;Han, Bong-Ho;Ki, Kyong-Seok
    • Korean Journal of Environment and Ecology
    • /
    • v.26 no.2
    • /
    • pp.219-232
    • /
    • 2012
  • The purpose of this study was to find characteristics of $Pinus$ $densiflora$ forests in previous records and cultural landscape regions and to establish a management method for recovery of $P.$ $densiflora$ landscape. A total of 16 landscape paintings were analyzed to study $P.$ $densiflora$ forests in Inwangsan(Mt.) shown in figure data. As a result of analyzing figure data, $P.$ $densiflora$ $forests$ were found to be distributed mainly in the ridge line of east slope side of Inwangsan(Mt.) from landscape paintings of Jung Seon, Jang Si Heung and Gang Hee Un. In order to analyze the landscape of $P.$ $densiflora$ forests shown in photograph data on Inwangsan(Mt.), photographs of Inwangsan(Mt.) since late 1800s were searched and a total of 24 photographs were used for analysis. As a result of photographic analysis, $P.$ $densiflora$ forests were found to be distributed mainly in the low area and ridge line of western slope side of Inwangsan(Mt.). As a result of analyzing the distribution status of 10 cultural heritages of Inwangsan(Mt.), cultural heritages in the mountain were mainly established with rocks and $P.$ $densiflora$ forests as the background and are establishing their landscape not only as a form of cultural heritage but also including the natural landscape in the background. A method of restoring cultural landscape of P. densiflora forests was necessary. As a result of analyzing 26 rock beds of Inwangsan(Mt.), most of $P.$ $densiflora$ forests were distributed nearby rock beds since the past. Among such regions, restoration and management of introduced species in the accumulated soil regions to $P.$ $densiflora$ forests were deemed necessary. As a result of analyzing current vegetation of $P.$ $densiflora$ forest areas of the past, 51.87% of areas maintained $P.$ $densiflora$ forest and 25.80% were changed to artificial forests. Most of low areas of the mountain were turned into urban area (10.16%). Management type for restoration of $P.$ $densiflora$ landscape of Inwangsan(Mt.) was classified into preservation, $P.$ $densiflora$ restoration and maintenance. Preservation management was configured as $P.$ $densiflora$ distribution and rocky area distribution. The targets of $P.$ $densiflora$ restoration were indigenous broad-leaf trees, vegetation areas with introduced species and damaged regions within the mountain. The targets of maintenance were urban area in the low area of Inwangsan(Mt.) and military base at the top of the mountain.

Studies on the Bare Rock-slope Conservation Measures (I) -Conservation and Revegetation by Parthenocissus spp.- (암벽면녹화공법개발(岩壁面綠化工法開發)에 관(關)한 연구(硏究)(I) - 담쟁이덩굴류(類)의 이용성개발(利用性開發) -)

  • Woo, Bo-Myeong
    • Journal of Korean Society of Forest Science
    • /
    • v.37 no.1
    • /
    • pp.1-16
    • /
    • 1978
  • The study describes on the identification and morphological characteristics of each species, ecological characteristics and propagation techniques, and developing utilization measures of the Parthenocissus plants for environment conservation and revegetation of the babe rock-slopes. The following species and varieties are disscussed in this study; Parthenocissus tricuspidata (S. et Z.) Planch. var. veitchii Rehd. var. lowii Rehd. var. pupurea Hort. Parthenocissus quiquefolia (L.) Planch. var. engelmanni Rehd. var. saint-pauli Rehd. var. hirsuta Planch. Parthenocissus henryana Diels et Gilg. Parthenocissus thomsoni Planch. Parthenocissus heptaphylla Small. Parthenocissus inserta (Kern.) K. Fritsch. Parthenocissus laetevirens Rehd. Parthenocissus himalayana Planch. These are, in general, all vigorous self-clinging climbers that will quickly cover a wall and bare rock surfaces with a dense network of branch growths and beautiful green leaves which change to shades of scarlet and crimson before they fall in Autumn. Parthenocissus tricuspidata out of 8 species in the genus Parthenocissus is the most useful plant for the environment conservation including the bare rock-slope revegetation and for the production of food and shelter for wildlifes. This native of Korea clings by means of small rootlike holdfasts (adhesive discs) and holds (tendrils) to stone work or any other solid support, tenaciously.

  • PDF

Distribution Types of the Relict Conifer Community and the Approach for the Ecological Management in Ulleung-Island (울릉도에 자생하는 침엽수류 유존군락의 분포유형과 생태적 관리방안에 대한 연구)

  • Cho, Hyun-Je;Lee, Jung-Hyo;Choo, Yeon-Sik;Hong, Sung-Cheon
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.1
    • /
    • pp.95-104
    • /
    • 2011
  • Distribution types of native conifers (Juniperus chinensis, Pinus parviflora, Tusga sieboldii and Taxus cuspidata var. latifolia) were studied by phytosociological investigation and ZM method in Ulleung Island, South Korea. Two main types were divided maritime vegetation (Juniperus chinensis forest) and mountain vegetation (Taxus cuspidata var. latifolia forest and Pinus parviflora-Tusga sieboldii forest). The former was divided into sea cliff distribution (J-SC) and sea ridge distribution (J-SR) type. The latter was classified 7 distribution types; Taxus cuspidata var. latifolia forest was rock distribution (Ta-R) and mountain slope distribution (Ta-MS) type, and Pinus parviflora-Tusga sieboldii forest was rock distribution (P T-R), upper and ridge distribution (P T-UR, 3 units sub-types:1sub, 2sub, 3sub), and Mountain slope distribution (P T-MS) type. It was considered that J-SC, Ta- R, and P T-R were maintained by topographic climax, but J-SR, Ta-MS, P T-UR and P T-MS were the process of vegetation succession. Distribution types of topographic climax are entrusted to process of vegetation succession. Types in the process of vegetation succession will be needed tending of forest to promote saplings growth and seedlings germination. Especially in order to restore Tsuga sieboldii forest should be afforest and make forest gap because It is mid shade tolerant tree and purity percentage of its seed is 1~2%. It was considered that the composition of group mixture forest constituted Pinus parviflora, Tsuga sieboldii, Taxus cuspidata, Camellia japonica, Machilus thunbergii and Acer okamotoanum, etc. will be able to restore native vegetation, after take the form of forest gap by strong thinning and pruning of Pinus thunbergii forest.

Analysis of Holdup Characteristics of Large and Small Bubbles in Three-Phase Fluidized Beds by using a Dynamic Gas Disengagement Method (삼상유동층에서 동력학적 기체유출 측정방법에 의한 큰 기포와 작은 기포의 체류량 특성 해석)

  • Lim, Hyun Oh;Lim, Dae Ho;Seo, Myung Jae;Kang, Yong;Jung, Heon;Lee, Ho Tae
    • Korean Chemical Engineering Research
    • /
    • v.49 no.5
    • /
    • pp.605-610
    • /
    • 2011
  • Phase holdup characteristics of relatively large and small bubbles were investigated in a three-phase(gasliquid-solid) fluidized bed of which diameter was 0.105 m(ID) and 2.5 m in height, respectively. Effects of gas(0.01~0.07 m/s) and liquid velocities(0.01~0.07 m/s) and particle size($0.5{\sim}3.0{\times}10^{-3}m$) on the holdups of relatively large and small bubbles were determined. The holdups of two kinds of bubbles in three phase fluidized beds were estimated by means of static pressure drop method with the knowledge of pressure drops corresponding to each kind of bubble, respectively, which were obtained by dynamic gas disengagement method. Dried and filtered air which was regulated by gas regulator, tap water and glass bead of which density was $2500kg/m^3$ were served as a gas, a liquid and a fluidized solid phase, respectively. The two kinds of bubbles in three-phase fluidized beds, relatively large and small bubbles, were effectively detected and distinguished by measuring the pressure drop variation after stopping the gas and liquid flow into the column as a step function: The increase slope of pressure drop with a variation of elapsed time was quite different from each other. It was found that the holdup of relatively large bubbles increased with increasing gas velocity but decreased with liquid velocity. However, the holdup showed a local minimum with a variation of size of fluidized solid particles. The holdup of relatively small bubbles increased with an increase in the gas velocity or solid particle size, while it decreased slightly with an increase in the liquid velocity. The holdups of two kinds of bubbles were well correlated in terms of operating variables within this experimental conditions, respectively.

Analysis of Kap-Chon's Water Level by the Waterside Planting (수변 식재에 따른 갑천의 수위 분석)

  • Woo, Won-Jae;Chung, Dong-Yang
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.1 no.1
    • /
    • pp.3-17
    • /
    • 1998
  • The purposes of this study is to investigate the possibility of planting trees at space land in the riverside. The space land is for the green space. Calculating the plantable space in the representation section and the flood flowing stability of the existing banks based on the hydrological and meteorological data of the Kap-Chon riverbasin located in Tae-jon, the following results are drawn. (1) The flood discharges in each flow section are $698.7m^3/s$ in section 1, $654.6m^3/s$ in section 2, and $1353.3m^3/s$ in section 3 during 100 years recurrence interval. Because the designed-flood discharges in those sections are $1719.9m^3/s$, $2119.7m^3/s$, and $1512.8m^3/s$ respectively, safety for flood flowing is sufficient in existing banks. (2) The possible clearance for planting trees is 1.80m in section 1, 3.90m in section 2, and 0.01m in section 3. Planting clearance is enough in section 1 and 2. However, planting should be planned after estimating a rise-height due to the bridge piers, because many piers under riverine-highway are now on the construction in section 2. The section 3 does not have sufficient clearance for planting trees, but the planting is possible after getting enough flow area with slope by cutting the terrace land on the river artificially heightened. (3) In case of planting a tree 70cm diameter in $1m^2$ in section 1, the water level increases by 0.60m. Planting a tree in a $48m^2$ area increases the water level by 0.90m. Considering that plantable clearance is 1.8m in section 1, it is sufficient to flow safely. But if the trees are planted so compactly from the upper stream, expected heavy resistance is expected due to caught materials on the trees. So, trees have to be planted widely in upper streams but compactedly in lower streams. (4) The river width without changing, Kap-Chon's flow channel can be snaked in accordance with the nature law the wide terrace land in the riverside. Decreased flow area due to planting trees will be compensated by the inclination of terrace land. And, it is theoretically proved that the flood discharge is safe even though the terrace land on the river is parked similar to the nature. Planting trees in the terrace land of the Kap-chon river to the extent that flood flowing is not adversely affected, we can get the enjoyable park to citizens not spending expensive cost. It also contributes to the recovery of ecosystem, which gives the natural beauty of river and shade to citizens and becomes good natural-educational places for children.

  • PDF

A Study on Evaluation Method for Structural Suitability of Constructed Wetlands in Dam Reservoirs as an Ecological Water Purification System (생태적 수질정화시설로서 댐 저수지 인공습지의 구조 적정성 평가방안)

  • Bahn, Gwon-Soo
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.50 no.2
    • /
    • pp.23-40
    • /
    • 2022
  • Many constructed wetlands have been installed in dam reservoirs nationwide for ecological purification of watershed pollutants, but aging and reduced efficiency are becoming issues. To improve the management of constructed wetlands, an objective evaluation of structural suitability is required. This study evaluated 39 constructed wetlands of 15 dams. First, through fogus group interview(FGI), survey analysis, and analytic hierarchy process(AHP), eight evaluation items in the physical and vegetative aspects were selected and the evaluation criteria applied with weights were prepared. Second, as a result of the structural suitability evaluation, the average score of the overall constructed wetlands was 80.8, with 10 sites rated as 'good grade(91~100)', 22 sites rated as 'normal grade(71~90)' and 7 sites rated as 'poor grade(70 or less)'. The average score of physical structure evaluation was 52.6, with 14 sites rated as 'good', 21 sites as 'normal' and 4 sites as 'poor'. The suitability of location was good level in most constructed wetlands, but the water supply system, depth of water, ratio of length-to-width, and slope of flow channel were evaluated as 'normal' or less in constructed wetlands of 50% or more. Therefore, it was found that overall improvement was necessary for stable flow supply and flow improvement in the constructed wetland. The average score of vegetative structure evaluation was 28.2, and about 84% of them were identified as 'normal' or lower. As a result of analyzing the Spearman's correlation coefficient between the physical structure evaluation score and the vegetation structure evaluation score, there was a significant correlation(r = 0.728, p < 0.001), and it was found that each evaluation factor also influences each other. As a result of the case review of 6 constructed wetlands, the appropriateness of the evaluation results was confirmed, and it was found that the location, flow rate supply, and type of wetland had a great influence on the efficiency and operation of the wetland. Through this study, it will be possible to derive structural weaknesses of constructed wetlands in dam reservoirs as a nature-based solution, to prepare types and practical alternatives for improved management of each constructed wetland in the future, and to contribute to enhancing various environmental functions.

The Characteristics of Retention and Evapotranspiration in the Extensive Greening Module of Sloped and Flat Rooftops (저토심 경사지붕과 평지붕 녹화모듈의 저류 및 증발산 특성)

  • Ryu, Nam-Hyong;Lee, Chun-Seok
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.41 no.6
    • /
    • pp.107-116
    • /
    • 2013
  • This study was undertaken to investigate the characteristics of retention and evapotranspiration in the extensive greening module of sloped and flat rooftops for stormwater management and urban heat island mitigation. A series of 100mm depth's weighing lysimeters planted with Sedum kamtschaticum. were constructed on a 50% slope facing four orientations(north, east, south and west) and a flat rooftop. Thereafter the retention and evapotranspiration from the greening module and the surface temperature of nongreening and greening rooftop were recorded beginning in September 2012 for a period of 1 year. The characteristics of retention and evapotranspiration in the greening module were as follows. The water storage of the sloped and flat greening modules increased to 8.7~28.4mm and 10.6~31.8mm after rainfall except in the winter season, in which it decreased to 3.3mm and 3.9mm in the longer dry period. The maximum stormwater retention of the sloped and flat greening modules was 22.2mm and 23.1mm except in the winter season. Fitted stormwater retention function was [Stormwater Retention Ratio(%)=-18.42 ln(Precipitation)+107.9, $R^2$=0.80] for sloped greening modules, and that was [Stormwater Retention Ratio(%)=-22.64 ln(X)+130.8, $R^2$=0.81] for flat greening modules. The daily evapotranspiration(mm/day) from the greening modules after rainfall decreased rapidly with a power function type in summer, and with a log function type in spring and autumn. The daily evapotranspiration(mm/day) from the greening modules after rainfall was greater in summer > spring > autumn > winter by season. This may be due to the differences in water storage, solar radiation and air temperature. The daily evapotranspiration from the greening modules decreased rapidly from 2~7mm/day to less than 1mm/day for 3~5 days after rainfall, and that decreased slowly after 3~5 days. This indicates that Sedum kamtschaticum used water rapidly when it was available and conserved water when it was not. The albedo of the concrete rooftop and greening rooftop was 0.151 and 0.137 in summer, and 0.165 and 0.165 in winter respectively. The albedo of the concrete rooftop and greening rooftop was similar. The effect of the daily mean and highest surface temperature decrease by greening during the summer season showed $1.6{\sim}13.8^{\circ}C$(mean $9.7^{\circ}C$) and $6.2{\sim}17.6^{\circ}C$(mean $11.2^{\circ}C$). The difference of the daily mean and highest surface temperature between the greening rooftop and concrete rooftop during the winter season were small, measuring $-2.4{\sim}1.3^{\circ}C$(mean $-0.4^{\circ}C$) and $-4.2{\sim}2.6^{\circ}C$(mean $0.0^{\circ}C$). The difference in the highest daily surface temperature between the greening rooftop and concrete rooftop during the summer season increased with an evapotranspiration rate increase by a linear function type. The fitted function of the highest daily surface temperature decrease was [Temperature Decrease($^{\circ}C$)=$1.4361{\times}$(Evapotranspiration rate(mm/day))+8.83, $R^2$=0.59]. The decrease of the surface temperature by greening in the longer dry period was due to sun protection by the sedum canopy. The results of this study indicate that the extensive rooftop greening will assist in managing stormwater runoff and urban heat island through retention and evapotranspiration. Sedum kamtschaticum would be the ideal plant for a non-irrigated extensive green roof. The shading effects of Sedum kamtschaticum would be important as well as the evapotranspiration effects of that for the long-term mitigation effects of an urban heat island.