• Title/Summary/Keyword: Green House

Search Result 958, Processing Time 0.024 seconds

Measuring Economic Values of Amenity Services from Urban Greenspaces in the Seoul Metropolitan Area Using Choice Experiments (선택실험을 이용한 서울 도시녹지 어메니티의 경제가치 평가)

  • Choi, Andy S.;Eom, Young Sook
    • Environmental and Resource Economics Review
    • /
    • v.27 no.1
    • /
    • pp.105-138
    • /
    • 2018
  • This paper reports novel empirical results of a choice experiment that elicited the economic values that residents in the Seoul metropolitan area place on the amenity services realized from the landscape views and accessibilities to urban green spaces (i.e., mountains, rivers and urban parks). The 1,000 respondents in the sample were divided into two residential of housing types (apartments vs. houses) and occupancy types (owners vs. tenants). Residents living in apartments are willing to pay an average of 28% (5.0 million KRW per year) above the current housing prices per household for a mountain view, compared to an apartment view from their living room. Their willingness to pay values are about 22% (4.0 million KRW per year) and 10% (1.8 million KRW per year) respectively for a river view and a urban park view. Economic benefits of having access (i.e., a 10 minutes working distance) to mountains, rivers and urban parks are estimated to be an average of 16% (2.9 million KRW per year), 20% (3.6 million KRW per year) and 18% (3.2 million KRW per year), respectively, above the current housing prices per household. On the other hand, access benefits for those residing in houses are 18% (4.7 million KRW per year), 16% (4.1 million KRW per year) and 22% (5.6 million KRW per year) per household, respectively. They are also willing to pay an average of 35% (8.9 million KRW per year) above the current housing prices for keeping or having a garden or vegetation bed. Furthermore, a strong "greenspace premium" is centered around the three Gangnam districts for house-dwellers, whereas it is areas of "new real estate boom" for apartment dwellers.

The Historical Geography of Land-Use and Agriculture Along the Lower Nam-River Floodplains (남강 하류 범람원의 토지이용과 농업형태 변화에 관한 연구)

  • Lee, Jeon;Son, Ill
    • Journal of the Korean association of regional geographers
    • /
    • v.4 no.2
    • /
    • pp.31-47
    • /
    • 1998
  • This paper deals with the historical geography of land-use and agriculture along the Lower Nam-River floodplains. The reclamation process of the river floodplains, the cultivation methods on the reclaimed lands, and the land-use patterns and processes are investigated. The Nam River, one of the major tributaries of the Nakdong River, flows through the boundary between Ham-An and Eu-Ryong Guns. Larger floodplains are located in Ham-An Gun. The floodplains of Ham-An Gun have been surveyed intensively in this study. In South Korea, the alluvial plains, mostly located along the river valleys, have been reclaimed to provide fertile agricultural lands. Those along the upper river valleys were reclaimed before those along the lower river valleys. The flood-plains of Han-An Gun were reclaimed to be the largest agricultural lands of the Gun. The natural levees along the Lower Nam-River Valley were identified before the reclamation processes but now hardly identified. Relatively larger floodplains are located along the tributary streams of the Nam River. Often there are low-lying back swamps between the natural levees and the hills/mountains that rise above the floodplains. The back swamps, called 'natural bog lands' in this region, have been reduced in size and in number through reclamation for the purpose of agricultural and industrial land-uses. Now about ten 'natural bog lands' are found in the Ham-An floodplains, and some of them are being reclaimed for the industrial land-use. This study suggests the emergent need of conservation for the remaining 'natural bog lands' in terms of ecology. Seven agricultural fields of large size, originated from the Nam-River floodplains, are identified in this study: Kun(큰들), Chung-Am(정암들), Chang-chi(장지들), Baek-San(백산들), Ha-Ki(하기들), Gu-Hae(구혜들), and Chang-Po(장포들) fields. The Kun field was reclaimed during the Japanese control and the Gu-Hae, in the 1950s. All of those except the above two fields were reclaimed after the mid-1960s. The Nam-River Dam in Chinju, completed in 1969, contributed the reclamation processes along the Lower Nam-River floodplains. The rice acreage of the region has been reduced slowly since 1970 but the rice production of the region has been relatively stable (Table 4). Rice culture had been the most important agriculture on the reclaimed lands for decades before the greenhouse vegetable cultivation became more important in the 1980s. Among the vegetables cultivated in the greenhouse, the watermelon is the dominantly leading one. Watermelons are usually harvested two or three times in a year though it is possible to harvest four times in one year. The rotation of watermelons and rice is common in the region. It is known the physical conditions of the Nam-River floodplains in Ham-An Gun is the most suitable for watermelon cultivation in South Korea.

  • PDF

Mineralization of Cattle Manure Compost at Various Soil Moisture Content (우분퇴비 시용후 토양수분 조절에 따른 질소 및 탄소의 전환)

  • Kim, P.J.;Chung, D.Y.;Chang, K.W.;Lee, B.L.
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.4
    • /
    • pp.295-303
    • /
    • 1997
  • To investigate the transformation characteristics of nitrogen and carbon from cow manure compost amended in soil under different moisture conditions, dynamics of nitrogen and carbon were determined periodically for 15 weeks of aerobic incubation at room temperature during July${\sim}$November, 1996. Cow manure compost matured with mixing saw dust was amended with the 4 ratios (0, 2, 4, 6%(wt/wt)) in Ap horizon soil, which collected from green house in Yesan, Chungnam. Moisture was controlled with 0.2, 0.3, 0.4, and 0.5 of mass water conte nt (${\theta}$m) to air dried soil, and water loss was compensated at every sampling. During incubation, soil pH was decreased continuously, that was caused by hydrogen generated from nitrification of ammonium nitrogen. And pH became higher with inclining cow manure compost amendment and water treatment, that meaned the increase of mineralization of organic-N to $NH_4\;^+-N$. Total nitrogen was reduced with increasing water content, but total carbon showed the contrast tendency with that of nitrogen. Therefore, C/N ratio slightly decreased in the low water condition (${\theta}$m 0.2) during incubation, but increased continuously in high water condition over ${\theta}$m 0.4. As a result, it was assumed that soil fertility is able to be reduced in the high water content over available water content. Nitrate transformation rate increased lasting in the low water content less than ${\theta}$m 0.3. Itdropped significantly in the first $2{\sim}3$ weeks of incubation over ${\theta}$m 0.4. In particular, nitrate was not detected in ${\theta}$m 0.5 of water content after the first $2{\sim}3$ weeks. In contrast, ammonium transformation was inclined with increasing water treatment. Nitrogen mineralization rate, which calculated with percentage ratio of (the sum of ex.$NH_4\;^+-N$ and $NO_3\;^--N$)/total nitrogen, was continuously increased in the low water content of ${\theta}$m 0.2 and 0.3. But it saw the different patterns in high water content over ${\theta}$m 0.4 that was drastically declined in the initial stage and then gradually inclined . From the above results, nitrogen transformation patterns differentiated decisively in water content between ${\theta}$m 0.3 and 0.4 in soil. Thus, it is very important for the maintain of suitable soil water content to enhance fertility of soil amended with manure compost. However, excess treatment of manure compost might enhance the possibility of contamination of small watershed and ground water around agricultural area.

  • PDF

A study on the emission characteristics of greenhouse gases according to the vehicle technology, fuel oil type and test mode (차량기술, 연료 유종 및 시험모드 특성에 따른 온실가스의 배출특성 연구)

  • Lee, Jung-Cheon;Lee, Min-Ho;Kim, Ki-Ho;Park, An-Young
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.962-973
    • /
    • 2017
  • Concerns about an air pollution are gradually increasing at home and abroad. The automotive and fuel researchers are trying to reduce emissions and greenhouse gases of vehicles through a research on new engine designs and innovative after-treatment systems using clean fuels (eco-alternative fuel) and fuel quality improvements. In this paper, we stduy the emission characteristics of greenhouse gases on seven vehicles using gasoline, diesel, and LPG by legal test mode in domestic and abroad.(Urban mode, Highway mode, rapidly acceleration and deceleration, using air conditioner, low temperature condition) Regardless of fuels, most of the greenhouse gases tend to show the worst results in cold FTP-75 mode. In the case of A vehicles (2.0 MPI) and B vehicles (2.4 GDI) using a gasoline fuel, the factors that increase greenhouse gases are in order of a rapidly acceleration and deceleration, using air conditioner, low temperature condition. But G vehicles(LPLi) have different emission characteristics from another vehicles. In the case of A vehicles (2.0 w/o DPF) and B vehicles (2.2 with DPF) using a diesel fuel, the factors that increase greenhouse gases are in order of a rapidly acceleration and deceleration, using air conditioner, low temperature condition. However, the factor of F vehicles are in order of low temperature condition, using air conditioner, rapidly acceleration and deceleration. In conclusion, it will be an effective method to apply different technologies of emission reduction for each fuel.

Breeding of Oriental Lily 'Pacific Wave' with Upward-facing and White Petals (상향 개화형 백색 오리엔탈나리 'Pacific Wave' 육성)

  • Rhee, Hye Kyung;Cho, Hae Ryong;Lim, Jin Hee;Kim, Mi Seon;Park, Sang Kun;Shin, Hak Ki;Joung, Hyang Young;Yae, Byeong Woo
    • FLOWER RESEARCH JOURNAL
    • /
    • v.16 no.4
    • /
    • pp.299-303
    • /
    • 2008
  • An Oriental lily cultivar 'Pacific Wave' was released in 2007 at National Institute of Horticultural and Herbal Science, Rural Development Administration (RDA), Suwon, Korea. The crossing was made in 1999 between Oriental lily 'Simplon', an outward-facing and white colored cultivar, and 'Spinoza', pink colored cultivar. The first selection was done in 2003 with a line of 'O-03-16'. Multiplication and bulb growth, and performance test was conducted from 2004 to 2006. This selection was later on given as 'Pacific Wave' in 2007 at NHRI. Flowering time of 'Pacific Wave' in plastics house culture is mid June and grows average 115 cm. Flowers are upward-facing with 20.1 cm in diameter and white with yellow centered (RHS W155C + Y9A). Mean petal length and width is 12.2 cm and 4.2 cm, respectively. Leaves are 12.3 cm long, 2.9 cm wide. The throat color is green. It shows gray and purple stigma, and red brown pollen. The weight and size of bulb is 82.5 g and 19.6 cm, respectively. Year-round flowering can be by storing the bulb under -1 to $-2^{\circ}C$ conditions. It is necessary to add calcium to the fertilizer or remove side scales to prevent leaf scorch. It is needed to control Botrytis disease in summer wet season.

Studies on Physiological Nitrogen Fixation -II. Effects of soil physical properties-soil texture, soil type, drainage and agricultural locality-on the changes of photo synthetic and aerobic heterotrophic nitrogen fixing activity (생리학적(生理學的) 질소고정(窒素固定)에 관(關)한 연구(硏究) -제(第) II 보(報). 답토양(畓土壤)의 물리적특성(物理的特性)-답류형(畓類型), 토성(土性), 배수정도(排水程度), 농업기후대(農業氣候帶)-이 광합성(光合成) 및 타양성질소고정력(他養性窒素固定力)에 미치는 영향(影響))

  • Lee, Sang-Kyu;Lee, Myeong-Gu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.20 no.2
    • /
    • pp.185-192
    • /
    • 1987
  • A green house experiment was conducted to find out the acetylene reducing and $N_2$-fixing activity from photosynthetic and aerobic heterotrophic nitrogen fixing microorganisms in submerged paddy soil under different agricultural locality, soil series, soil texture, soil type, and drainage condition in which samples taken from without nitrogen treatment plot of NPK trials on 16 sites of the farmer's field. The results obtained were summarized as follows: 1. The highest acetylene reducing activity was observed at 7 days after incubation in the light condition (photo synthetic microbes+heterotrophic bacteria) while it was observed at 35 days incubation in the dark condition (heterotrophic bacteria). 2. Among the soil series, photosynthetic nitrogen fixing activity was pronounced more in Jangae, Ogcheon and Hwadong series while lower was obtained in Buyong and Daejeong series. Aerobic heterotrophic nitrogen fixing activity was high in Buyong and Daejong series. 3. Estimated amount of $N_2$-fixation from acetylene reducing activity was equivalented to 3.0 mg in light condition and 4.9 mg/100g/105 days in dark condition. 4. Among the agricultural locality, photosynthetic nitrogen fixing activity was high in rather warm southern part while heterotrophic nitrogen fixing activity was predominated more in mountainous area and Chungcheong continental. 5. Photosynthetic nitrogen fixing activity was predominated in high productive soil while aerobic heterotrophic nitrogen fixing activity was pronounced more in crose coarse sandy soil. 6. The soils properties of high photosynthetic nitrogen fixing activity were constituted of poorly or imperfectly drained clay or clay loam soil while heterotrophic nitrogen fixing activity was pronounced more in well to moderately well drained sandy or sandy loam soil.

  • PDF

The Effect of Soil Moisture Stress on the Growth of Barley and Grain Quality (토양수분 스트레스가 보리생육 및 종실품질에 미치는 영향)

  • Park, Moo-Eon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.28 no.2
    • /
    • pp.165-175
    • /
    • 1995
  • To determine the effect of soil moisture stress on growth of barley and grain quality, a pot experiment was carried out for two barley varieties(Olbori and Chogangbori) by using large plastic pot(52cm in diameter and 55cm in depth) filled with sandy loam soil under rain-controlled open green house. By means of measuring soil water potential with micro tensiometer and gypsum block installed at 10cm in soil depth, soil moisture was controlled by sub-irrigation at several irigation points such as -0.05bar, -0.2bar, -0.5bar, -1.0bar, -5.0bar and -10.0bar in soil water potential. The lower soil water potential was controlled, the shorter length of stem and internode became, and the more narrow stem diameter was. Leaf area was significantly decreased when soil water potential was controlled lower than -0.5bar, although chlorophyll content of flag and first leaves was not changed so much. Weight of grain and ear was significantly decreased when soil water potential was lower than -5.0bar and the highest grain yield was obtaind in a plot where soil water potential was controlled at -0.2bar. However, the most efficient water use of Olbori and Chogangbori was obtained at -0.5bar and -1.0bar in water potentials, respectively. Crude protain content, maximum viscosity, consistency and ${\beta}$-glucan content of barley flour increased as soil water potential significantly decreased, especially below -5.0bar, but gelatination temperature decreased as soil water potential decreased.

  • PDF

Compaction Characteristics of Multi-cropping Paddy Soils in South-eastern Part of Korea (우리나라 동남부 다모작 논토양의 경반화 특성)

  • Yun, Eul-Soo;Jung, Ki-Yeul;Park, Ki-Do;Sonn, Yeon-Kyu;Park, Chang-Yeong;Hwang, Jae-Bog;Nam, Min-Hee
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.688-695
    • /
    • 2011
  • This study was carried out for some survey about soil compaction in the multi-cropping system of paddy field. Investigated sites were 90 farmer's fields in south-eastern part of Korea. The tillage practices season was different according to cropping system of paddy; in spring for mono rice cultivation and in autumn for the multi-cropping field. The average tillage depth in investigated sites was about 25 cm, however, it is different between the farmer's tillage practices and soil characteristics. It is high correlation to tillage deep and minimum resistance of penetration. The reaching soil deep to maximum resistance of penetration was about 27 cm, and average penetration resistance of the deep is 1.8~2.0 MPa for moderately fine-textured soils and more than 3.0 MPa for moderately coarse-textured soils. The difference of penetration resistance between cultivating and compacted layer was in order to sandy loam > clayey loam > clayey, and the difference was lesser in poorly drained soils than somewhat poorly ones. In the rice mono cropping field, the maximum resistance in no-tillage for 15 years was 1.18~1.25 Mpa at 20~25 cm in soil deep, however, the resistance of field with every year tillage practices was 2.03~2.21 Mpa. In the extremely compacted sandy loam textured soils, the penetration resistance at 30 cm in soil depth was drastically reduced by the subsoil from 5.2 Mpa to 3.2 Mpa, and the watermelon root in plastic film house was deep elongated.

Assessment of Green House Gases Emissions using Global Warming Potential in Upland Soil during Pepper Cultivation (고추재배에서 지구온난화잠재력 (Global Warming Potential)을 고려한 토성별 온실가스 발생량 종합평가)

  • Kim, Gun-Yeob;So, Kyu-Ho;Jeong, Hyun-Cheol;Shim, Kyo-Moon;Lee, Seul-Bi;Lee, Deog-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.886-891
    • /
    • 2010
  • Importance of climate change and its impact on agriculture and environment have increased with a rise of greenhouse gases (GHGs) concentration in Earth's atmosphere, which caus an increase of temperature in Earth. Greenhouse gas emissions such as carbon dioxide ($CO_2$), methane ($CH_4$) and nitrous oxide ($N_2O$) in the Upland field need to be assessed. GHGs fluxes using chamber systems in two upland fields having different soil textures during pepper cultivation (2005) were monitored under different soil textures at the experimental plots of National Academy of Agricultural Science (NAAS), Rural Development Administration (RDA) located in Suwon city, Korea. $CO_2$ emissions were 12.9 tonne $CO_2\;ha^{-1}$ in clay loam soil and 7.6 tonne $CO_2\;ha^{-1}$ in sandy loam soil. $N_2O$ emissions were 35.7 kg $N_2O\;ha^{-1}$ in clay loam soil and 9.2 kg $N_2O\;ha^{-1}$ in sandy loam soil. $CH_4$ emissions were 0.054 kg $CH_4\;ha^{-1}$ in clay loam soil and 0.013 kg $CH_4\;ha^{-1}$ in sandy loam soil. Total emission of GHGs ($CO_2$, $N_2O$, and $CH_4$) during pepper cultivation was converted by Global Warming Potential (GWP). GWP in clay loam soil was higher with 24.0 tonne $CO_2$-eq. $ha^{-1}$ than that in sandy loam soil (10.5 tonne $CO_2$-eq. $ha^{-1}$), which implied more GHGs were emitted in clay loam soil.

The Creation and Transformation Process of Ssangsanjae as a Private Garden in the Late Joseon Dynasty (조선 후기 민가 정원 쌍산재의 조영과 변화 과정)

  • Kim, Seo-Lin;Sung, Jong-Sang;Kim, Hee-Su;Cui, Yu-Na;Jung, Jin-Ah;Cho, Seong-Ah
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.39 no.2
    • /
    • pp.1-14
    • /
    • 2021
  • Ssangsanjae was created in the mid-1800s, It is located at Jiri Mountain to the north and the Seomjin River to the south. This garden has not changed much even though it has passed through the sixth generation since its creation, so it still retains the features of a private garden in the late Joseon Dynasty. This study focused on the changing landscape of Ssangsanjae as a historical garden; through field surveys, interviews and analysis of builder's collection, boards and couplets. Ssangsanjae is largely classified into inner and outer gardens, and the inner is divided into an entry space, a residential space, and a backyard. The backyard consists of Seodangchae, it's garden, Gyeongamdang, and swimming pool, and is connected to the Sado Reservoir area, which is the outer garden. The distinct vegetation landscape of Ssangsanjae are a 13,000m2 bamboo and green tea field, Peony(Paeonia suffruticosa Andr. and Paeonia lactiflora var. trichocarpa(Bunge) Stern) planted on both sides of the road that crosses the lawn, the view through a frame(額景) shown by the twisted branches of Camellia and Evergreen spindletree, and a fence made of Trifolia Orange(Poncirus trifoliata) and Bamboo. Ssangsanjae stands out for its spatial composition and arrangement in consideration of the topography and native vegetation. The main building was named by the descendants based on the predecessor's Aho(pseudonym), and it is the philosophical view of the predecessors who tried to cultivate the younger students without going up on the road. The standing stone and white boundary stone built by Mr. Oh Ju Seok are Ssangsanjae's unique gardening facilities. The stone chairs, and swimming pool which were created by the current owner for the convenience of families and visitors also make a distinctive landscape. Ssangsanjae, for residents, was a place for living, exchanging friendships, training himself and seculusion, for children was a place for learning, but now is 'the private garden' where many people can heal themselves. Over the 200 years, the landscape of Ssangsanjae's inner and outer gardens experienced large and small changes. As such, it is necessary to recognize the historical gardens with changing properties as a living heritage. This study is significant in that, as the first study to approach Ssangsanjae in the view of landscape research, it provides basic data on Ssangsanjae as a destination of garden tourism.