• Title/Summary/Keyword: Green Fluorescent Protein

Search Result 283, Processing Time 0.044 seconds

Expression of various fluorescent protein and their production in shake flasks

  • Park, So-Jung;Han, Kyung-Ah;Rhee, Jong-Il
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.408-411
    • /
    • 2005
  • The green fluorescent protein (GFP) from the jellyfish aequorea and its fluorescent homologs from Anthozoa corals have become invaluable tools for imaging of cells and tissues. In this study various fluorescent protein such as green fluorescent protein (GFP), yellow fluorescent protein (YFP) and red fluorescent protein (RFP) have been expressed in Escherichia coli. Growth of recombinant cells and production of fluorescent proteins were investigated in shake flasks. Some characteristics of fluorescent proteins was also studied.

  • PDF

Construction of a Novel Baculovirus Autographa californica Nuclear Polyhedrosis Virus Producing the Fluorescent Polyhedra

  • Je, Yeon-Ho;Jin, Byung-Rae;Roh, Jong-Yul;Chang, Jin-Hee;Kang, Seok-Kwon
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.1 no.1
    • /
    • pp.19-23
    • /
    • 2000
  • A novel recombinant baculovirus Autographa californica nuclear polyhedrosis virus (ACNPV) producing the green fluorescent polyhedra was constructed and characterized. The recombinant virus was stably produced fluorescent polyhedra in the infected cells and the morphology of the polyhedra was nearly similar to that of wild-type AcNPV. For the production of the fluorescent polyhedral the green fluorescent protein (GFP) gene was introduced under the control of polyhedrin gene promoter of AcNPV by translational fusion in the front and back of intact polyhedrin gene. The recombinant baculovirus was named as CXEP, As expected, the 93 kDa fusion protein was expressed in the CXEP-infected cells. Interestingly, however, the cells infected with CXEP also showed a 33 kDa protein band as cells infected with wild-type AcNPV. The results of Southern blot analysis and plaque assay suggested that two types of baculoviruses expressing the GFP fusion protein or only native polyhedrin were formed through homologous recombination between two polyhedrin genes in the same orientation. Thus, this system can be applied for the production of recombinant polyhedra with foreign gene product of diverse interest.

  • PDF

Display of green fluorescent protein (GFP) on the cell surface of Zymomonas mobilis using N-terminal domain of ice nucleation protein (빙핵활성단백질의 N-terminal 부분을 이용한 녹색형광단백질의 Zymomonas mobilis 세포 표면 발현)

  • Lee, Eun-Mo;Choi, Shin-Geon
    • Journal of Industrial Technology
    • /
    • v.29 no.B
    • /
    • pp.115-119
    • /
    • 2009
  • Green fluorescent protein (GFPuv) was displayed on the surface of ethanol-producing bacteria Zymomonas mobilis using N-terminal domain of ice nucleation protein (INP) as an anchoring motif. To evaluate the ice nucleation protein as plausible anchor motif in Z. mobilis, GFPuv gene was subcloned into Zymomonas expression vector yielding pBBR1MCS-3/pPDC/INPN/GFPuv plasmid., INP-GFPuv fusion protein was expressed in Z. mobilis and its fluorescence was verified by confocal microscopy. The successful display of GFPuv on Zymomonas mobilis suggest that INP anchor motif could be used for future fusion partner in Z. mobilis strain improvement.

  • PDF

Production of Green Fluorescent Protein (GFP) from Transgenic Rice Cell Suspension Culture (형질전환된 벼세포배양에서 green fluorescent protein (GFP) 생산)

  • Lee, Jae-Hwa
    • Journal of Life Science
    • /
    • v.17 no.2 s.82
    • /
    • pp.293-297
    • /
    • 2007
  • Green fluorescent protein (GFP) is an attractive reporter for bioprocess monitoring. A fluorescence-based method was developed to quantify GFP levels in transgenic plants and protein extracts. In this study, GFP was produced and secreted from suspension cells derived from transgenic rice. The RAmy3E promoter placed before the GFP gene controlled by sugars such as sucrose. The effects of sucrose concentration on the secretion of GFP and total protein into the medium were investigated in batch suspension culture. It was possible, therefore, to induce the expression of the GFP by removing sucrose from the cultured media or by allowing the rice suspension cells to deplete sucrose catabolically. The dry cell weight (7.06 g/L) and GFP level were detected as highest at 12%, 3% sucrose after 20 day culture, respectively. However secreted GFP fluorescence at the other sucrose concentrations (6%, 12%, 18% and 24%) were a little amount in media.

Construction of a Novel Recombinant Bombyx mori Nuclear Polyhedrosis Virus Producing the Fluorescent Polyhedra

  • Kang, Seok-Woo;Yun, Eun-Young;Woo, Soo-Dong;Goo, Tae-Won;Hwang, Jae-Sam
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.3 no.1
    • /
    • pp.75-81
    • /
    • 2001
  • We have constructed a novel recombinant Bombyx mori nuclear polyhedrosis virus (BmNPV) producing the green fluorescent polyhedra. For the production of the fluorescent polyhedra, partial polyhedrin gene containing KRKK as nuclear localization site from the BmNPV polyhedrin gene and the green fluorescent protein (gfp) gene were introduced under the control of p10 promoter of BmNPV. The recombinant BmNPV was stably produced fluorescent polyhedra in the infected Bm5 cells and the morphology of the fluorescent polyhedra was similar to that of wild-type BmNPV. The fluorescent polyhedra had 32 kDa native polyhedrin and 41 kDa fusion protein. From these data, we have further developed a novel BmNPV p10-based transfer vector producing recombinant polyhedra with foreign gene Product. The novel BmNPV P10-based transfer vector is composed of partial polyhedrin gene, factor Xa, and multiple cloning sites.

  • PDF

Potentiality of Green Fluorescent Protein (GFP) from Aequorea victoria - A Mini Review

  • Karagozlu, Mustafa Zafer;Kim, Se-Kwon
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.5 no.4
    • /
    • pp.26-32
    • /
    • 2011
  • Green fluorescent protein (GFP), a very important biological agent that involves shifting the color of bioluminescence from blue to green in luminous coelenterates and to increase the quantum yield of light emission. GFP discovered in medusa, Aequorea victoria is a key factor of various biotechnological and cell biological applications. Beside these applications, GFP of A. victoria is generally stable, which does not require co-factors for activity and can be functionally expressed in different bacterial species. This property of GFPs from A. victoria permits them to be a unique tool to monitor gene expression and protein localization in different organisms. The present review brings out the past milestones and future perspectives on GFPs, with an elaborative reviewing on its applications.

Effective Expression of Recombinant Baculovirus Vector Systems (재조합 베큘로바이러스벡터의 효과적 발현)

  • Kim, Ji-Young;Hong, Seong-Karp
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.977-980
    • /
    • 2014
  • A baculovirus vector systems including genes of polyhedron promoter, vesicular stomatitis virus G (VSVG), polyA, cytomegalovirus (CMV) promoter, enhanced green fluorescent protein (EGFP), and protein transduction domain (PTD) were constructed. These recombinant baculovirus vector systems were transfected into human foreskin fibroblast cells and various tissues and investigated gene transfer and expression of these vector systems with control vectors. From the study, these recombinant baculovirus vector systems were more effective and safe than control vector in view of gene transfer and expression.

  • PDF

In Vitro Combinatorial Mutagenesis of the 65th and 222nd Positions of the Green Fluorescent Protein of Aequarea victoria

  • Nakano, Hideo;Okumura, Reiko;Goto, Chinatsu;Yamane, Tsuneo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.5
    • /
    • pp.311-315
    • /
    • 2002
  • By the in vitro combinatorial mutagenesis, which is a sequential reaction of PCR mutagenesis and in vitro coupled transcription/translation with Escherichia coli S30 extract, S65 and E222 of green fluorescent protein of Aequarea victoria were comprehensively changed to all possible combinations of amino acids, thus totally 400 mutant (including a wild type) proteins were simultaneously produced and their fluorescent properties were analyzed. Although a few mutations had been reported so far at the 222nd position, replacement E222 to all other19 amino acids gave fluorescent signal to the mutants by changing Ser 65 to Ala together. Among the mutants, replacement to G, A, S, Q, H and C gave relatively high fluorescence. The in vitro combinatorial mutagenesis, therefore, has been proved valuable for comprehensive structure-function studies of proteins.

Expression of Enhanced Green Fluorescent Protein from Stably Transformed Drosophila melanogaster S2 Cells

  • Lee, Jong-Min;Park, Jong-Hwa;Chung, In-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.1
    • /
    • pp.115-118
    • /
    • 2000
  • Recombinant plasmids harboring a heterologous gene coding for the enhanced green fluorescent protein (EGFP) were transfected and expressed in Drosophila melanogaster S2 cells. A stable transformation of polyclonal cell populations expressing EGFP were isolated after 4 weeks of selection with hygromycin B. The recombinant EFGP expressed in transformed S2 cells consisted of a molecular weight of 27 kDa. EGFP expression was also confirmed by fluorometric measurement. The maximum EGFP concentration was about 9.3 mg/I. The present findings demonstrate not only the successful stable expression of EGFP in Drosophuila was about 9.3 mgI. The present findings demonstrate not only the successful stable expression of EGFP in Drosophila S2 cells, but also the use of EGFP as a reporter to analyze gene expression, with its potential of a Drosophila cell expression system for recombinant protein production being an alternative to a baculovirus-insect cell expression system.

  • PDF

Efficacy of Gene Transfer of Recombinant Baculovirus Vector

  • Sa, Young-Hee;Hong, Seong-Karp
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.1006-1008
    • /
    • 2013
  • A novel recombinant baculovirus vector system containing coding genes for polyhedron promoter, vesicular stomatitis virus G (VSVG), polyA, cytomegalovirus (CMV) promoter, enhanced green fluorescent protein (EGFP), and protein transduction domain (PTD) was constructed. We applied this recombinant baculovirus vector into cells and murine tissues and compared efficacy of gene transfer and expression of this recombinant baculovirus vector system with control vector system. From this result, we confirmed that this novel recombinant baculovirus vector system was very effective than control vector system.

  • PDF