• Title/Summary/Keyword: Green Energy Technology

Search Result 1,178, Processing Time 0.031 seconds

A New Study of Sensing and Optimum Preparation Conditions of Graphite/Different Paper Sensors for Composite Materials (복합재료용 흑연/종이 센서의 최적제조조건 및 감지능 평가 연구)

  • Park, Ha-Seung;Shin, Pyeong-Su;Kim, Jong-Hyun;Baek, Yeong-Min;Park, Joung-Man
    • Composites Research
    • /
    • v.31 no.2
    • /
    • pp.51-56
    • /
    • 2018
  • A new study was carried out to utilize a pencil drawing paper sensor (PDPS), which drew a line using a pencil on the paper, as a sensor. The sensing effect on 3 different papers based on the properties of PDPS was compared. The specimens were prepared by drawing 4B pencils on plain (A4), Hwasun, and Han papers. The silver paste was used to give good electrical contacts of the copper wires and the pencil drawn line. The chemical structures of 3 papers for PDPS by FT-IR spectrum analysis were similar and the comparative compact states of each paper were observed by optical microscope. From statistical evaluation of tensile strength using 3 papers, plain paper was chosen to be best for the PDPD. The optimum drawing number of PDPD was determined by changing the thickness of the paper with the drawing number. Electrical resistance (ER) with graphite on 3 different papers were compared. The changes in compression was observed through cyclic compressive test of composite materials, it was possible to predict the degree of strain sensing under compressive test. It leads to expectation of properties.

Epoxy Matrix with Adding Dopamine for Improving Mechanical Property and Interfacial Adhesion with Glass Fiber (도파민이 첨가된 에폭시 기지재의 기계적 물성 및 유리섬유 간 계면접착력 향상)

  • Shin, Pyeong-Su;Kim, Jong-Hyun;Baek, Yeong-Min;Park, Ha-Seung;Park, Joung-Man
    • Composites Research
    • /
    • v.32 no.2
    • /
    • pp.96-101
    • /
    • 2019
  • Interfacial adhesion between fiber and resin are related to composites performance, so it is very important to evaluate them accurately. In this study, the interfacial properties of microdroplets under fatigue loading conditions were evaluated. The mechanical properties and interfacial adhesion of epoxy resin with dopamine were studied. Tensile specimens were prepared to evaluate mechanical properties and epoxy microdroplets specimens were used for the evaluation of interfacial adhesion. In addition, in the microdroplet fatigue test, the same diameter of the microdroplet was used and the experiment was performed under the same conditions. As a result, it was confirmed that mechanical and interfacial properties were improved when dopamine was applied to epoxy resin through tensile and microdroplet experiments. It is considered that dopamine improves the degree of curing of the epoxy resin and imparts hydroxyl groups to the epoxy resin to increase the mechanical properties and the interfacial adhesion between the glass fibers.

Adhesion and Lifetime Extension Properties of Electrical Conductive Paint Stored under of Nitrogen Atmosphere (질소환경에서 보관된 전기전도성 페인트의 접착 및 수명연장 특성)

  • Shin, Pyeong-Su;Kim, Jong-Hyun;Baek, Yeong-Min;Park, Ha-Seung;Park, Joung-Man
    • Journal of Adhesion and Interface
    • /
    • v.20 no.1
    • /
    • pp.9-14
    • /
    • 2019
  • The change of three different reagents for electrical conductive paint using aircraft coating with elapsing time of exposure to different condition was investigated. Three different reagents were poured into the vial bottles, stored in air condition and room temperature and observed with elapsing days. In addition, adhesion property of paint was tried using cross cut tape test after storage of $N_2$ atmosphere. The weight of each different reagent was measured along with elapsing time. To confirm the change of chemical component with exposure of air atmosphere, FT-IR was performed. The weight of part A and Part B decreased slightly whereas the weight of part C decreased rapidly and the precipitation was remained. The part B was cured after exposure of $N_2$ atmosphere and the 2250 cm-1 from FT-IR peak decreased slowly at the same time. It was considered that the water contained in air accelerated the reaction of -NCO functional groups and it caused the curing whereas $N_2$ atmosphere not contained water and it resulted in the retardancy of curing.

Deriving Strategic Priorities of Green ICT Policy using AHP and ANP (AHP와 ANP 방법론을 이용한 그린 ICT 정책의 전략적 우선순위 도출 방안)

  • Shim, Yong-Ho;Byun, Gi-Seob;Lee, Bong-Gyou
    • Journal of Internet Computing and Services
    • /
    • v.12 no.1
    • /
    • pp.85-98
    • /
    • 2011
  • Recently, the world faces a global environmental crisis by the increase of energy consumption and global warming. Since the crisis directly affects political, economic, social, and environmental areas, many countries prepare Green ICT policy to overcome it. However, although Green IT policy provides many benefits by solving environmental pollution and increasing energy efficiency, Korean government did not prepare measures by the policy. The purpose of this study is to suggest priorities of political goals for maximizing the efficiency after introducing Green ICT policy in Korea. Major variables are drawn for the analysis, and they are eco-friendliness, technology evolution, economic efficiency, energy efficiency, and stable supply of energy. The variables are suggested based on 'Low Carbon, Green Growth Act', then the survey was conducted to policy expert using AHP(Analytic Hierarchy Process) and ANP(Analytic Network Process) for prioritizing variables. As a result of the AHP, it is derived in the order of eco-friendliness, technology evolution, economic efficiency, energy efficiency, and stable supply of energy. The ANP result shows in the order of technology evolution, energy efficiency, economic efficiency, eco-friendliness, and stable supply of energy. The research is conducted to analyze the priorities of goals for Green IT policy, and the analysis results are possible to use as a practical guideline for establishing associated policies in the future.

A study on thermal simulation for extensive green roof system using a plant canopy model (식생캐노피모델을 통한 저관리 조방형 옥상녹화시스템의 열해석 전산모의에 관한 연구)

  • Kim, Tae Han
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.15 no.2
    • /
    • pp.137-147
    • /
    • 2012
  • GRS is an effective urban ecology restoration technique that can manage a variety of environmental functions such as ecological restoration, rainwater spill control and island heat effect from a low-impact development standpoint that can be utilized in new construction and retrofits. Recently, quantitative evaluation studies, both domestic and abroad, in the areas related to these functions, including near-earth surface climate phenomenon, heavy rainwater regulation, thermal environment of buildings, have been actively underway, and there is a trend to standardize in the form of technological standards. In particular, centered on the advanced European countries, studies of standardizing the specific insulation capability of buildings with green system that comprehensively includes the green roof, from the perspective of replacing the exterior materials of existing buildings, are in progress. The limitation of related studies in the difficulties associated with deriving results that reflect material characteristics of continuously evolving systems due in part to not having sufficiently considered the main components of green system, mechanisms of vegetation, soils. This study attempts to derive, through EnergyPlus, the effects that the vegetation-related indicators such as vegetation height, FCV, etc. have on building energy load, by interpreting vegetation and soil mechanisms through plant canopy model and using an ecological standard indicator LAI that represent the condition of plant growth. Through this, the interpretations that assume green roof system as simple heat insulation will be complemented and a more practical building energy performance evaluation method that reflects numerical methods for heat fluxes phenomena that occur between ecology restoration systems comprised of plants and soil and the ambient space.

A Study on the Economic and Social Benefits of the Microgrid Business Model in Island Areas : Consumer's Community Solar Participation in Development (도서지역 마이크로그리드 사업모델의 경제적, 사회적 편익에 관한 연구: 수요자의 태양광 에너지 공동체를 중심으로)

  • Lee, SangHee;Lee, Hae-Seok;Kim, Kyung Nam
    • Current Photovoltaic Research
    • /
    • v.9 no.2
    • /
    • pp.59-73
    • /
    • 2021
  • The purpose of this study is to develop a business model that efficiently converts diesel power generation systems to renewable energy microgrids (MG) in large-scale islands. Most of the previous studies on the conversion of renewable energy MG in islands had limitations dealing with efficiency from the perspective of suppliers. However, the microgrid has the characteristic of getting benefits through the interaction between the consumer and the supplier. In addition, the efficient MG business model from the perspective of new institutional economics is a structure in which consumers and suppliers jointly participate. Therefore, this study assumed that the MG business model in which the supplier's MG and the consumer's community solar participated would benefit all participants, and verified the assumptions using domestic island data. In terms of supplier investment, the cost of power supply (LCOE) of assumed model was calculated to be 14.0% lower than that of the diesel model and 3.7% lower than that of the supplier-only MG model. From the perspective of consumer investment, electricity bills are expected to be reduced by more than 200,000 won per household per year through self-generation of solar power. Social benefits are expected to reduce external environmental costs. The CO2 emissions of the assumed model were calculated to be 39.5% lower than the diesel model and 1.5% lower than the supplier-only MG model. Therefore, the MG business model with consumer participation proposed in this study is expected to be an efficient alternative to renewable energy MG conversion in domestic islands, and is meaningful as an energy plan that improves the benefits of local residents.

Economic Feasibility Analysis of the Metropolitan Area Green Heat Project (수도권 그린히트 프로젝트의 경제적 타당성 분석)

  • Kim, Sang-Kee;Kim, Lae Hyun;Yoo, Seung-Hoon
    • Journal of Energy Engineering
    • /
    • v.24 no.1
    • /
    • pp.32-41
    • /
    • 2015
  • The Metropolitan Area Green Heat Project (MAGHP), which collects unused heat gathered from power plants, steel works, landfills in western Metropolitan area and distribute it to integrated energy business (IEB) companies, is proposed for the purpose of enhancing energy efficiency and providing low-price heat for IEB companies. Therefore, in order to decide on whether to initiate the MAGHP, the economic feasibility analysis of the project is widely demanded. This paper attempts to consider and measure four economic benefits: heat supply benefit, production cost reduction benefit, greenhouse gas mitigation benefit, and air quality improvement benefit. In addition, the paper tries to conduct the economic feasibility analysis. The project requires three-year investment and thirty-year operation. Three important findings emerge from the analysis. First, its net present value is computed to be 1,269 billion won and more than zero. Second, its benefit/cost ratio is calculated to be 1.72 and bigger than 1.0. Third, its internal rate of return is estimated to be 24.26% and larger than the social rate of return, 5.5%. In conclusion, the MAGHP is socially profitable and should be conducted immediately.

Energy Saving Effect and Improvement of Indoor Thermal Environment through the Window Retrofit (창호 리트로피트를 통한 에너지 절감 및 실내 열환경 개선 효과 분석에 관한 연구)

  • Jeong, Jin-Woo;Ju, Jung-Hoon;Cho, Dong-Woo
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.3
    • /
    • pp.29-36
    • /
    • 2018
  • The goal of this study is to retrofit the windows of residential buildings and to activate the green remodeling by verifying energy saving and indoor thermal environment. As a result of analysis of the energy saving effect of 458 units window retrofits, it was possible to reduce the energy requirement by 48.20% ~ 54.97%. According to the improvement on indoor environment, it was possible to operate by reducing heating temperature and supply time. The actual gas consumption of the heating period was reduced by 25% compared with that of the window retarder to save 28,968 thousand won of heating energy cost. Resident's satisfaction surveys were conducted one year after window retrofit. More than 80% of the respondents answered that they satisfied the improvement on window performance, indoor thermal environment and indoor sound environment. As a result, we verified the energy saving effect and the improvement on the indoor environment through window retrofits.

Fuel Cell Research Trend Analysis for Major Countries by Keyword-Network Analysis (키워드 네트워크 분석을 통한 주요국 연료전지 분야 연구동향 분석)

  • SON, BUMSUK;HWANG, HANSU;OH, SANGJIN
    • Journal of Hydrogen and New Energy
    • /
    • v.33 no.2
    • /
    • pp.130-141
    • /
    • 2022
  • Due to continuous climate change, greenhouse gases in the atmosphere are gradually accumulating, and various extreme weather events occurring all over the world are a serious threat to human sustainability. Countries around the world are making efforts to convert energy sources from traditional fossil fuels to renewable energy. Hydrogen energy is a clean energy source that exists infinitely on Earth, and can be used in most areas that require energy, such as power generation, transportation, commerce, and household sectors. A fuel cell, a device that produces electric and thermal energy by using hydrogen energy, is a key field to respond to climate change, and major countries around the world are spurring the development of core fuel cell technology. In this paper, research trends in China, the United States, Germany, Japan, and Korea, which have the highest number of papers related to fuel cells, are analyzed through keyword network analysis.

Structuring of Bulk Silicon Particles for Lithium-Ion Battery Applications

  • Bang, Byoung-Man;Kim, Hyun-Jung;Park, Soo-Jin
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.3
    • /
    • pp.157-162
    • /
    • 2011
  • We report a simple route for synthesizing multi-dimensional structured silicon anode materials from commercially available bulk silicon powders via metal-assisted chemical etching process. In the first step, silver catalyst was deposited onto the surface of bulk silicon via a galvanic displacement reaction. Next, the silver-decorated silicon particles were chemically etched in a mixture of hydrofluoric acid and hydrogen peroxide to make multi-dimensional silicon consisting of one-dimensional silicon nanowires and micro-scale silicon cores. As-synthesized silicon particles were coated with a carbon via thermal decomposition of acetylene gas. The carbon-coated multi-dimensional silicon anodes exhibited excellent electrochemical properties, including a high specific capacity (1800 mAh/g), a stable cycling retention (cycling retention of 89% after 20 cycles), and a high rate capability (71% at 3 C rate, compared to 0.1 C rate). This process is a simple and mass-productive (yield of 40-50%), thus opens up an effective route to make a high-performance silicon anode materials for lithiumion batteries.