• Title/Summary/Keyword: Green Architectural Engineering

Search Result 181, Processing Time 0.051 seconds

Analysis of the Effects of Walking Environment Components on Pedestrian Satisfaction and Dissatisfaction

  • Lee, Meesung;Lee, Heejung;Kim, Taeeun;Hwang, Sungjoo
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.863-870
    • /
    • 2022
  • Unsatisfactory urban walking environment stresses urban residents, and may cause mental illness and chronic diseases by reducing walking activities. Therefore, establishing a high-quality walking environment that can promote walking activities in urban residents has emerged as an important issue. The walking environment consists of various components, such as trees, stairs, streetlights, benches, signs, fences, and facilities, and it is essential to understand which components and their settings act as satisfiers or dissatisfiers for pedestrians, to create a better quality walking environment. Therefore, this study investigated pedestrian satisfaction and dissatisfaction as a function of various environmental components through a survey using walking environment images. The results revealed that most of the walking environment components except the braille block and treezone exhibited significant correlations with pedestrian satisfaction. Particularly, safety-related component (e.g., adjacent roads, parked cars, traffic cushions, and car separation), and landscape-related components (e.g., trees and green), as well as the material settings of landscape facilities (e.g., wooden fences, benches, stairs, and walkway surfaces) correlated with pedestrian satisfaction. The results of this study can contribute to the extraction of useful features to evaluate pedestrian satisfaction as a function of the walking environment. The research outcome is expected to assist in the effective arrangement of walking environment components and their settings, which will ultimately contribute to significantly satisfactory walking environment and encourage walking activities.

  • PDF

ML-based Allowable Axial Loading Estimation of Existing RC Building Structures (기계학습 기반 노후 철근콘크리트 건축물의 축력허용범위 산정 방법)

  • Hwang, Heejin;Oh, Keunyeong;Kang, Jaedo;Shin, Jiuk
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.5
    • /
    • pp.257-266
    • /
    • 2024
  • Due to seismically deficient details, existing reinforced concrete structures have low lateral resistance capacities. Since these building structures suffer an increase in axial loads to the main structural element due to the green retrofit (e.g., energy equipment/device, roof garden) for CO2 reduction and vertical extension, building capacities are reduced. This paper proposes a machine-learning-based methodology for allowable ranges of axial loading ratio to reinforced concrete columns using simple structural details. The methodology consists of a two-step procedure: (1) a machine-learning-based failure detection model and (2) column damage limits proposed by previous researchers. To demonstrate this proposed method, the existing building structure built in the 1990s was selected, and the allowable range for the target structure was computed for exterior and interior columns.

Green Building Design Strategies for Multiplex Housing

  • Park, Won Ho;Ahn, Yong Han;Choi, Young-Oh
    • KIEAE Journal
    • /
    • v.16 no.4
    • /
    • pp.21-30
    • /
    • 2016
  • Purpose: Energy saving in the built facilities is getting important due to energy crisis. The Korea government has been implemented several energy and green building policies and practices. The both of government and industry also developed green building strategies ant technologies to reduce energy consumption and carbon emission. The purpose of this research is to identify applicable green building strategies and technologies for that can be cost effective and applicable to a multiplex house. Method: This research identified appropriate green building strategies from analysing green building strategies from G-SEED certified apartment projects and popular green building strategies. This study also adopted a survey research method to find out the applicable green building strategies for a multiplex housing. In addition, this research also conduct cost estimating to identify initial cost premium of green building strategies. Results: The research outcomes in this study guide a building owner to know about initial cost premiums of green building strategies and technologies and an architect and contractor to identify appropriate and cost effective green building strategies that can be applicable to a multiplex house.

Heating and Cooling Load according to the Climatic Conditions of Foreign Cities (해외 주요 도시의 기후특성에 따른 최대공조부하 요소별 분석)

  • An, Seung-Hyun;Kim, Jong-Ho;Lee, Jung-Hun;Lee, Sang-Yup;Song, Doo-Sam
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.5
    • /
    • pp.81-87
    • /
    • 2014
  • According to the domestic construction business will continue stagnant, many domestic construction companies are expanding their business into foreign countries. As results, building design guidelines including HVAC design for foreign countries considering the regional climate conditions are needed. Also, green building design strategies to minimize the heating and cooling load are key issue to win a contract in construction business in the world. In this study, peak heating and cooling loads were calculated for the representative cities in the world : Seoul, St. Petersburg, Singapore and Mecca. The analyzed building was a typical high-rise office building and the building envelope properties, indoor heat gain, residence and operating schedules were same in all cases. Only the weather conditions were different by cases.

Building Commissioning Management Framework from the Case Study of Green Building (녹색건축물인증(LEED) 사례연구를 통한 커미셔닝 관리 프레임워크 도출)

  • Jeong, Jin-Hak;Park, So-Yeon;Song, Dong-Hun;Ahn, Yong-Han
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.34 no.8
    • /
    • pp.23-30
    • /
    • 2018
  • A necessity of increasing the energy efficiency of the buildings is rising due to global warming and high energy demands prices. Commissioning is an effective way to increase the energy efficiency of the building and reduce maintenance costs. In this study, a case study was conducted to derive the commissioning process of green building and propose management factors that can be used in domestic commissioning projects. The case was a university renovation project that received a LEED Glod certification and conducted the enhanced commissioning. The commissioning is divided into planning, design, construction, and post-construction phases. In the planning stage, commissioning company selection, commissioning goal setting, tasks and responsibilities for each subject are set. In the design phase, preparations are made for inspection and construction steps to prevent design errors. In the construction phase, problems are solved through periodic on-site inspections. In the post-construction phase, a final report with all the details of the commissioning will be created and future maintenance strategies will be proposed. Based on the findings of this study, it will be a basis for the management factors that can be used in the implementation of domestic commissioning projects.

A Framework of Building Knowledge Representation for Sustainability Rating in BIM

  • Shahaboddin Hashemi Toroghi;Tang-Hung. Nguyen;Jin-Lee. Kim
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.437-443
    • /
    • 2013
  • Recently, sustainable building design, a growing field within architectural design, has been emerged in the construction industry as the practice of designing, constructing, and operating facilities in such a manner that their environmental impact, which has become a great concern of construction professionals, can be minimized. A number of different green rating systems have been developed to help assess that a building project is designed and built using strategies intended to minimize or eliminate its impact on the environment. In the United States, the widely accepted national standards for sustainable building design are known as the LEED (Leadership in Energy and Environmental Design) Green Building Rating System. The assessment of sustainability using the LEED green rating system is a challenging and time-consuming work due to its complicated process. In effect, the LEED green rating system awards points for satisfying specified green building criteria into five major categories: sustainable sites, water efficiency, energy and atmosphere, materials and resources, and indoor environmental quality; and sustainability of a project is rated by accumulating scores (100 points maximum) from these five major categories. The sustainability rating process could be accelerated and facilitated by using computer technology such as BIM (Building Information Modeling), an innovative new approach to building design, engineering, and construction management that has been widely used in the construction industry. BIM is defined as a model-based technology linked with a database of project information, which can be accessed, manipulated, and retrieved for construction estimating, scheduling, project management, as well as sustainability rating. This paper will present a framework representing the building knowledge contained in the LEED green building criteria. The proposed building knowledge framework will be implemented into a BIM platform (e.g. Autodesk Revit Architecture) in which sustainability rating of a building design can be automatically performed. The development of the automated sustainability rating system and the results of its implementation will be discussed.

  • PDF

Environmental Performance Evaluation for Song-do City Constructions by using Green Building Certification Criteria (친환경건축물(親環境建築物) 인증기준(認證基準)을 이용(利用)한 송도국제도시(松島國際都市) 건축물(建築物)의 친환경성(親環境性) 평가(評價))

  • Park, Tae-Bum;Kim, Yong-Shik
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.3
    • /
    • pp.111-117
    • /
    • 2006
  • Song-do City is a newly constructed city built on land reclaimed from the seaside and the surrounding area. Its development involved a long process since the basic plans for reclamation of the publicly owned seaside area in Song-do were drawn up in September 1979. However, if we take a look at the overall status of the project as it is carried on at present, it is hard to deny that the project is trapped inside the same legal restrictions as are all other existing cities, which permits Song-do City to meet only very minimum standards. This study intends to analyze and assess the Song-do City's environmentally friendly construction and to rate its current development status, exposing any problems and offering alternative solutions. In this paper, the current state of constructions in Song-do City were reviewed. Then a quantitative analysis and assessment for the Song-do City constructions of apartments, complex buildings, office buildings, and school facilities were conducted by using green building certification criteria. Finally the synthetic results of environmental performance evaluation for Song-do city constructions and follow-up suggestions were described.

An Energy Performance Evaluation of UFAD System under the Various Conditions of Thermal Load (실내 부하조건에 따른 바닥공조 시스템의 에너지 성능 평가)

  • Yoon, Seong-Hoon;Jang, Hyang-In;Kim, Kyung-Ah;Yu, Ki-Hyung;Suh, Seung-Jik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.1
    • /
    • pp.14-19
    • /
    • 2013
  • The present study has been conducted for evaluating and comparing the performance of the underfloor air distribution system(UFAD) and the ceiling based air distribution system(CBAD) under cooling condition. Simulations and experiments were carried out for verifying the model by TRNSYS program about UFAD and CBAD. The results of simulation for various conditions of thermal load are summarized as followings. UFAD had an advantage for making thermal comfort because of lower temperature of the floor surface. Moreover, UFAD showed lower fan power about 30~50% than CBAD under the same conditions of thermal load. The energy saving rates of UFAD were increased to 17.7% in proportion to the thermal load on unoccupied zone(lighting). Ultimately, additional investigations should be done for analyzing optimized operating conditions of UFAD with considering the thermal performance of building envelop and the thermal load.

ECONOMIC ASSESSMENT OF THE SOLAR-ENERGY SYSTEM USING LIFE CYCLE COST ANALYSIS

  • Chang-Yoon Ji;Dong-Won Jang;Taehoon Hong;Chang-Taek Hyun
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.669-675
    • /
    • 2009
  • As the use of new and renewable energy is one of the ways by which the exhaustion of fossil fuels and the other existing environmental problems can be addressed, a policy of spreading information regarding it and of conducting R&D related to it is currently being implemented in advanced countries. In the construction field, the concept of "green building" was born, and the application of this concept has increased, with the end in view of achieving energy savings, resource savings, and recycling, and of conserving the natural environment. In this context, the government of Korea amended the "Law on the Development, Use, and Promotion of New and Recycled Energy" in 2004, which contains 11 provisions related to new and renewable energy and their sources, including solar and geothermal energy as well as sunlight, water, rainfall, and organisms. Since solar-energy should be used instead of fossil fuels by converting sunlight directly into electricity, many researches on this subject are in progress. There are few researches, however, employing the economic approach to the subject. Thus, in this study, an economic assessment of the solar-energy system was conducted using both life cycle cost (LCC) analysis and sensitivity analysis. The results of the LCC analysis show that the solar-energy system will become economically better than the fossil fuel system after 16 years, although the initial construction cost of the solar-energy system is higher than that of the fossil fuel system. The results of this study are expected to be used in selecting an eco-friendly and economical solar-energy system when the construction of a green building is planned.

  • PDF

A Case Study on Green Remodeling of Water System in Jeju Airport (우수 시스템을 적용한 친환경 리모델링 방안 : 제주 국제공항을 대상으로)

  • Kim, Byung-Hyun;Na, Su-Yeun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.6
    • /
    • pp.464-469
    • /
    • 2007
  • The case study aims to propose the green remodeling strategies of water system in Jeju international airport facilities considering the environmental conditions of Jeju Island. The rain water was proposed as an alternative water source to conserve of under ground water resources. Computations of daily precipitation, rain collection, runoff and water usage was conducted to investigated the feasibility of the rain water system design.