• Title/Summary/Keyword: Grazing pasture

Search Result 171, Processing Time 0.032 seconds

Forage and Cattle Productivities of Intensive Grazing System (집약방목지에서의 목초 및 가축생산성에 관한 연구)

  • 윤세형;이종경;박근제
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.22 no.1
    • /
    • pp.45-50
    • /
    • 2002
  • This experiment was conducted to establish the intensive Grazing system through the improved pasture utilization of the Hanwoo beef cattle. Intensive grazing period, 2 to 3 days was compared to conventional rotation-grazing period, 5 to 6 days as control. The intensive grazing system which has 2 to 3 days of grazing period, increased forage DM yield(7.33t/ha) by 17% compared to control(6.28t/ha), and contributed to stabilization of the seasonal productivity through the increased DM yield after August. Plant height, feed intake and efficiency of grazing was increased in intensive rotation.

Effect of Mixture Types on Botanical Composition and Dry Matter Yield in Alpine Pasture (산지 고랭지에서 방목용 혼파조합이 목초의 식생구성 비율 및 건물수량에 미치는 영향)

  • Sung Kyung Il;Lee Jun Woo;Jung Jong Won;Lee Joung Kyong
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.25 no.4
    • /
    • pp.259-266
    • /
    • 2005
  • The objective of this study was to determine which mixture types are suitable for maintaining grazing pasture at alpine area. The mixtures types were evaluated by the botanical composition and dry matter (DM) of forage. The experiment was carried out on the grazing pasture at Daekwanryeong area (altitude ; 840m) from 1991 to 1993. Treatments were composed of seven mixture types made of both different components and amounts of sowing. The components of each mixture were Orchardgrass (OG), Tall fescue (TF), Timothy (TI). Kentucky bluegrass (KBG), Reed cannarygrass (RCG), Red clover (RC) and Ladino clove. (LC). The seeding .ate of OG, TF, TI, KBG and LC in control(C) was 18:9:8:3:2 kg/ha, respectively and those of treatments of T1 (OG:TF:KBG:LC), T2 (OG:TF:KBG:RC), T3 (OG:TI:KBG:LC), T4 (OG:TF:KBG:LC), T5 (OG:TI:KBG:LC) and T6 (OG:RCG:KBG:LC) were 24:8:2:2, 24:8:2:2, 26:8:2:2, 8:28:2:2, 5:24:2:2 and 8:26:2:2 kg/ha, in seeding rate. respectively. The plant heights of mixtures in 1991, 1992 and 1993 were 33, 37, and 33 cm on average of before and after grazing, respectively. The 12cm of stubble height was left after grazing during 3 years which can result in the reduction of forage intake and utilization. This result indicates the grazing period will be needed to adjust. The proportions of TI, OG, KBG and LC in mixtures were increased constantly, and the proportions of weeds and bare lands were little. The T5, in which the smaller amounts of seeds were sown, is considered as proper mixture type for Alpine pasture. The DM yield tended to increase with the increased grazing period, and the highest DM yield was occurred in 1993. No significant difference among treatments was observed for the DM yield, however the 75 was highest (9,344 kg/ha) in the DM yields which is $5.7\%$ greater than the C (8,840 kg/ha). This result indicates that T5 (OG:TI:KBG:LC : 8:24:2:2 kg/ha) is considered to be proper mixture type at alpine pasture considering the botanical composition and forage yield.

Seasonal Variation of Potassium and Magnaesium Contents of Forage Plant Grown in Grazing Pasture and Meadow (방목이용과 채초이용시 나타나는 목초중 칼리 및 마그네슘 함량의 계절변화)

  • ;Shigekata Yoshida;Tadakatsu Okubo;Ryosei Kayama
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.10 no.1
    • /
    • pp.27-35
    • /
    • 1990
  • As a part of studies on potassium(K) behavior in grassland with respect to magnesium(Mg) balance of ruminants, seasonal variation of K and Mg contents of forages including native gasses grown in grazing pasture and meadow were investigated. During an experimental period from April to October of 1984, two times of grazings were carried out in the orchardgrass (Dacfylis glomerata L.) and the tall fescue (Festuca arundinacea Schreb.)dominant grazing pastures, and forage plants (forages and native grasses) were sampled monthly and also K and Mg contents were determined without separating into individual plant species (Experiment 1). All the plant species grown in the two meadows which situated in the grazing pastures were harvested five times during the same period, separated into individual plant species, and botanical composition (SDR, ) and K and Mg contents of the plant species were determined (Experiment 2). The results obtained were as follows: 1. During the experimental period in the orchardgrass grazing pasture K contents of the forage plants were the highest in spring, and the seasonal variation of the contents in the orchardgrass pasture (1.5-5.8 % in a dry matter basis) was more significant than that of forage plants in the tall fescue grazing pasture (3.0- 3.8 %). 2. The Mg contents of forage plants in the orchardgrass grazing pasture ranged under 2.0 mg/g DW from Arpil until July, and the contents in the orchardgrass pasture (1.5-3.1 mg/g DW) was in the lower range than that of forage plants in the tall fescue pasture (2.0-3.8 mg/g DW). (Experiment I). 3. Orchardgrass was the dominant species in the orchardgrass meadow until July, but several species of native grasses were observed from summer (July) and native grasses such as Digitaria adscendens and Echinochlw crus-galli became dominant in autumn (October). 4. Seasonal variation of K contents of orchardgrass was in the range of 3.9-5.9 %, and the contents was higher in spring (May) and in autumn (October). The variation of white clover (Trifolium repens L.) was in the range of 3.6-5.0 %, that of tall fescue 3.8-4.8 %, and that of Italian ryegrass (Lolium multiflorum Lam.) 2.7-3.5 %, respectively. 5 . Seasonal variation of Mg content of white clover was in the range of 2.9-3.7 mg, that of tall fescue 2.0- 3.3 mg, and that of orchardgrass 1.6-2.8 mg/g DW, respectively. The variation of the contents of Italian ryegrass was in the range of 1.3-1.9 mg/g DW. And Mg contents of the forage plants were higher in summer(July) 6. In autumn (October and November ) native grasses such as D. adscendens and E. crus-galli contained lower K contents (1.7-3.9 %), but higher Mg contents (3.2-10.1 mg/g DW) than the forages contained. (Experiment 2) From the results above, it is known that K contents ranged higher in younger forages in viewpoint of growth stage and higher in spring and autumn, and that Mg contents ranged lower in spring. Therefore, the mineral imbalance or hypomagnesaemic (grass) tetany can be triggered in spring or autumn, and more frequently by such plant species as orchardgrass and Italian ryegrass with lower Mg and/or higher K contents than by tall fescue. And it is suggested that the dominant native grasses in autumn such as D. adscendens and E. emsgalli can contribute to the prevention of the tetany with higher Mg and lower K contents.

  • PDF

Effect of Extension of Grazing Duration in Late Autumn on Grass Growth in Following Spring (만추 방목기간의 연장이 이듬해 봄 목초의 생육에 미치는 영향)

  • ;;Masahiko Okubo
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.20 no.3
    • /
    • pp.161-168
    • /
    • 2000
  • The experiment was carried out to investigate the effect of extension of grazing duration in late autumn on grass growth in following spring, in order to improve the rate of self-sufficiency for roughage feed. Plant height, total biomass and litter production of herbage were increased when the grazing was finished early in late autumn. The proportions of clover and litter, and amounts of animal intake were decreased, with extended grazing duration in late autumn. But when the grazing was finished late in autumn, the contents of crude protein (CP, %) of herbage were increased, contents of acid detergent fiber (ADF, %), neutral detergent fiber (NDF, %) and crude ash (%) were decreased in pasture after grazing, therefore the contents of total digestible nutrients (TDN, %) and relative feed value (RFV) of herbage were improved. The early end grazing showed that plant height, total biomass and litter production of herbage in following spring were higher than those in late end grazing. However, increased yields were not significantly different among end grazing treatments (0.12-0.15 tonha), except for the final end grazing in late autumn (0.01 tonha). With extended grazing duration in late autumn, the contents of CP of herbage in following spring were increased, contents of ADF, were decreased, and RFV were improved. (Key words : Extension of grazing duration, Plant height, Biomass, Amount of intake, Increased yield, Crude protein, TDN) rll\ulcorner c# qiil x i 9 ~ 1 a% * (College of Natural Resources, Taegu Univ., Kyongsan, 71 2-714, Korea) * $4 4 qiil 34 qq(Co1lege of Liberal Arts & Sciences, Yonsei Univ., Wonju, 220-701, Korea) '* 8 * jL@%ft@ &@%(Faculty of Agriculture, Hokkaido Univ., Sapporo, 060 Japan)

  • PDF

Urinary Cortisol Levels in Japanese Shorthorn Cattle before and after the Start of a Grazing Season

  • Higashiyama, Y.;Narita, H.;Nashiki, M.;Higashiyama, M.;Kanno, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.10
    • /
    • pp.1430-1434
    • /
    • 2005
  • We conducted two experiments to assess the effect of transfer from housing to grazing on stress hormone secretion in cattle using urine samples. In a preliminary experiment, urine samples were collected following an adrenocorticotrophic hormone (ACTH) challenge, and cortisol levels in urine were compared with the levels in plasma. In a second experiment, urinary cortisol was measured before and after the start of a grazing season in 6 Japanese Shorthorn cows, all of which had experienced grazing before. In experiment 1, urinary cortisol showed a pattern of changes similar to that of plasma with a 0.5-h temporal lag time, and the peak levels were 4 to 10 times higher than the basal levels. In experiment 2, the urinary cortisol levels in cows did not change after the cows were let out to pasture, with no decreases in body weight. This study suggests that the transfer from housing to grazing did not affect physiological responses to cause high excretion of urinary cortisol in grazing-experienced cattle using a non-invasive sampling method.

Impact of Salt Intake on Red and Fallow Deer Production in Australia - Review -

  • Ru, Y.J.;Glatz, P.C.;Miao, Z.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.12
    • /
    • pp.1779-1787
    • /
    • 2000
  • Southern and south-western Australia is a typical mediterranean environment, characterised by wet, cold winters and dry, hot summers. The evaporation rate varies significantly in summer, resulting in a high salinity of drinking water for grazing animals. In addition, a large amount of land in the cropping areas is affected by salt. Puccinellia, tall wheat grass and saltbushes have been planted to improve the soil condition and to supply feed for grazing animals. Animals grazing these areas often ingest an excessive amount of salt from soil, forage and drinking water which can reduce feed intake, increase the water requirement, depress growth and affect body composition as demonstrated in sheep. While the deer industry has been successfully developed in these regions, the potential impact of excessive salt intake on deer production is unknown. The salt tolerance has been well defined for sheep, cattle and other livestock species, but the variation between animal species, breeds within species, maturity status and grazing environments makes it impossible to apply these values directly to deer. To optimise deer production and effectively use natural resources, it is essential to understand the salt status of grazing deer and the impact of excessive salt intake on growth and reproduction of deer.

Grazing Soybean to Increase Voluntary Cow Traffic in a Pasture-based Automatic Milking System

  • Clark, C.E.F.;Horadagoda, A.;Kerrisk, K.L.;Scott, V.;Islam, M.R.;Kaur, R.;Garcia, S.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.3
    • /
    • pp.422-430
    • /
    • 2014
  • Pasture-based automatic milking systems (AMS) require cow traffic to enable cows to be milked. The interval between milkings can be manipulated by strategically allocating pasture. The current experiment investigated the effect of replacing an allocation of grazed pasture with grazed soybean (Glycine max) with the hypothesis that incorporating soybean would increase voluntary cow traffic and milk production. One hundred and eighty mixed age, primiparous and multiparous Holstein-Friesian/Illawarra cows were randomly assigned to two treatment groups (n = 90/group) with a $2{\times}2$ Latin square design. Each group was either offered treatments of kikuyu grass (Pennisetum clandestinum Hoach ex Chiov.) pasture (pasture) or soybean from 0900 h to 1500 h during the experimental period which consisted of 2 periods of 3 days following 5 days of training and adaptation in each period with groups crossing over treatments after the first period. The number of cows trafficking to each treatment was similar together with milk yield (mean ${\approx}18$ L/cow/d) in this experiment. For the cows that arrived at soybean or pasture there were significant differences in their behaviour and consequently the number of cows exiting each treatment paddock. There was greater cow traffic (more cows and sooner) exiting pasture allocations. Cows that arrived at soybean stayed on the allocation for 25% more time and ate more forage (8.5 kg/cow/d/allocation) relative to pasture (4.7 kg/cow/d/allocation). Pasture cows predominantly replaced eating time with rumination. These findings suggest that replacing pasture with alternative grazeable forages provides no additional incentive to increase voluntary cow traffic to an allocation of feed in AMS. This work highlights the opportunity to increase forage intakes in AMS through the incorporation of alternative forages.

Backgrounding steers on temperate grasses mixed with vetch and/or using energy supplementation

  • de Oliveira Lazzarotto, Eduardo Felipe Colerauz;de Menezes, Luis Fernando Glasenapp;Paris, Wagner;Molinete, Marcos Luis;Schmitz, Gean Rodrigo;Baraviera, Jose Henrique Ignacio;Farenzena, Roberta;de Paula, Adalberto Luiz
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.6
    • /
    • pp.800-807
    • /
    • 2019
  • Objective: The aim was to evaluate backgrounding beef steers on oat + ryegrass pastures mixed with vetch and/or using energy supplementation. Methods: A randomized block design with three treatments and three replications was used. The treatments were: grass + supplement (oat + ryegrass + supplementation), legume + supplement (oat + ryegrass + vetch + supplementation) and grass + legume (oat + ryegrass + vetch). A continuous grazing system with a variable stocking rate was used. Twenty-seven intact crossbred steers (1/4 Marchigiana, 1/4 Aberdeen Angus and 2/4 Nellore) aged 7 months old and average weight of 190 kg were used. Steers were supplemented at 1% of the body weight of ground corn. The experiment lasted 84 days, between May and August 2014. Behavioral assessments were performed two times per experimental period, for 24 hours. Results: The forage mass was different between treatments, being greater for steers fed without legume. The accumulation rate, forage allowance, and stocking rate did not differ between treatments due to the adequate adjustment of forage allowance. The final weight of animals, as well as the dry matter intake (kg/d), did not differ between treatments. However, forage intake was higher for non-supplemented animals in relation to supplemented steers. Supplement intake did not alter the total digestible nutrient intake due to pasture quality. Animals fed grass + supplement had higher live weight gain per area than those fed grass + legume. Animals without supplementation spent more time in grazing. Conclusion: Feeding behavior was not altered by mixing with vetch or supplementation. Non-supplemented animals started the grazing peak earlier and spent more time in grazing than those supplemented; however, the average daily gain was similar between treatments. The live weight gain per hectare was 47% higher in pastures in which the animals received supplementation compared with those mixed with vetch, a consequence of the substitutive effect.

Effect of Restricted Grazing Time on the Foraging Behavior and Movement of Tan Sheep Grazed on Desert Steppe

  • Chen, Yong;Luo, Hailing;Liu, Xueliang;Wang, Zhenzhen;Zhang, Yuwei;Liu, Kun;Jiao, Lijuan;Chang, Yanfei;Zuo, Zhaoyun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.5
    • /
    • pp.711-715
    • /
    • 2013
  • To investigate the effect of restricted grazing time on behavior of Tan sheep on desert steppe, forty 4-months old male Tan sheep with an original body weight (BW) of $15.62{\pm}0.33$ kg were randomly allocated to 4 grazing groups which corresponded to 4 different restricted grazing time treatments of 2 h/d (G2), 4 h/d (G4), 8 h/d (G8) and 12 h/d (G12) access to pasture. The restricted grazing times had a significant impact on intake time, resting time, ruminating time, bite rate and movement. As the grazing time decreased, the proportion of time spent on intake, bite rate and grazing velocity significantly (p<0.05) increased, but resting and ruminating time clearly (p<0.05) decreased. The grazing months mainly depicted effect on intake time and grazing velocity. In conclusion, by varying their foraging behavior, Tan sheep could improve grazing efficiency to adapt well to the time-limited grazing circumstance.

Grazing system and floor type effects on blood biochemistry, growth and carcass characteristics of Nguni goats

  • Chikwanda, Allen Tapiwa;Muchenje, Voster
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.9
    • /
    • pp.1253-1260
    • /
    • 2017
  • Objective: Purpose was to determine the effects of grazing system and floor type on concentrations of blood metabolites, activity of creatine kinase, body weight and carcass characteristics of castrated Nguni goats. Methods: Forty eight, 7 month old goats were randomly allocated to herding and tethering treatments from 0800 to 1300 hours and accommodated on slatted and earth floors daily. Blood samples were collected by jugular venipuncture every fifteenth day for metabolite analysis. Slaughter was done at a commercial abattoir following 5 months of monitoring. Results: Tethered goats had significantly higher concentrations of urea (5.19 mmol/L) (p<0.001), creatinine ($55.87{\mu}mol/L$) (p<0.05), total protein (64.60 g/L) (p<0.01), and globulin (49.79 g/L) (p<0.001), whereas herded goats had higher glucose (3.38 mmol/L) (p<0.001), albumin (15.33 g/L) (p<0.05), albumin/globulin ratio (0.34) (p<0.01), and body weight (24.87 kg) (p<0.001). Slatted floors caused higher (p<0.01) albumin at 15.37 g/L. The interaction of grazing system and floor type affected creatinine, total protein, globulin at (p<0.01) and albumen/globulin ratio at (p<0.01). The least creatinine concentration and albumin/globulin ratio was in herded and tethered goats that were accommodated on earth floors, respectively. The highest total protein and globulin concentrations were in serum of tethered goats that were accommodated on earth floors. The highest (p<0.05) dressing percentage (45.26%) was in herded goats accommodated on slatted floors. Conclusion: Herding of goats lowered globulin concentration, improved estimated feed intake, blood glucose and albumin concentrations, albumin globulin ratio, increased body weights and weight related carcass characteristics. Floor type had very little effects on metabolites where earth floors only reduced albumin concentration. Tethering and housing goats on earth floors resulted in double stress that increased chronic infections.