• Title/Summary/Keyword: Gray Mold

Search Result 260, Processing Time 0.022 seconds

Identification and Characterization of Novel Biocontrol Bacterial Strains

  • Lee, Seung Hwan;Kim, In Seon;Kim, Young Cheol
    • Research in Plant Disease
    • /
    • v.20 no.3
    • /
    • pp.182-188
    • /
    • 2014
  • Because bacterial isolates from only a few genera have been developed commercially as biopesticides, discovery and characterization of novel bacterial strains will be a key to market expansion. Our previous screen using plant bioassays identified 24 novel biocontrol isolates representing 12 different genera. In this study, we characterized the 3 isolates showing the best biocontrol activities. The isolates were Pantoea dispersa WCU35, Proteus myxofaciens WCU244, and Exiguobacterium acetylicum WCU292 based on 16S rRNA sequence analysis. The isolates showed differential production of extracellular enzymes, antimicrobial activity against various fungal or bacterial plant pathogens, and induced systemic resistance activity against tomato gray mold disease caused by Botrytis cinerea. E. acetylicum WCU292 lacked strong in vitro antimicrobial activity against plant pathogens, but induced systemic resistance against tomato gray mold disease. These results confirm that the trait of biological control is found in a wide variety of bacterial genera.

Screening and Evaluation of Yeast Antagonists for Biological Control of Botrytis cinerea on Strawberry Fruits

  • Chen, Pei-Hua;Chen, Rou-Yun;Chou, Jui-Yu
    • Mycobiology
    • /
    • v.46 no.1
    • /
    • pp.33-46
    • /
    • 2018
  • Gray mold (Botrytis cinerea) is one of the most common diseases of strawberries (Fragaria${\times}$ananassa Duchesne) worldwide. Although many chemical fungicides are used for controlling the growth of B. cinerea, the risk of the fungus developing chemical resistance together with consumer demand for reducing the use of chemical fungicides have necessitated an alternative method to control this pathogen. Various naturally occurring microbes aggressively attack plant pathogens and benefit plants by suppressing diseases; these microbes are referred to as biocontrol agents. However, screening of potent biocontrol agents is essential for their further development and commercialization. In this study, 24 strains of yeast with antagonistic ability against gray mold were isolated, and the antifungal activity of the volatile and diffusible metabolites was evaluated. Putative mechanisms of action associated with the biocontrol capacity of yeast strains against B. cinerea were studied through in vitro and in vivo assays. The volatile organic compounds produced by the Galactomyces candidum JYC1146 could be useful in the biological control of plant pathogens and therefore are potential alternative fungicides with low environmental impact.

Control Efficacy of a New Fungicide Fludioxonil on Lettuce Gray Mold According to Several Conditions (발병 조건에 따른 fludioxonil의 상추 잿빛곰팡이병 방제효과)

  • Choi, Gyung-Ja;Jang, Kyoung-Soo;Choi, Yong-Ho;Kim, Jin-Cheol
    • Research in Plant Disease
    • /
    • v.15 no.3
    • /
    • pp.217-221
    • /
    • 2009
  • Fludioxonil is derived from the antifungal compound pyrrolnitrin produced by Pseudomonas pyrrocinia and classified as a reduced-risk fungicide by the US EPA. The efficacy of fludioxonil for the control of lettuce gray mold caused by Botrytis cinerea was evaluated under several conditions such as growth stages of host, inoculum concentrations, and amounts of potato dextrose broth (PDB) included in spore suspension of B. cinerea. At 4-leaf stage of lettuce plants, fludioxonil applied at 2 ${\mu}g$/ml was more effective for the control of gray mold than at 5- and 6-leaf stages. However, fludioxonil at more than 10 ${\mu}g$/ml provided similar control activity in all growth stages of lettuce tested. The fungicide (10 and 50 ${\mu}g$/ml) also gave excellent control of gray mold on lettuce seedlings inoculated with spore suspensions of B. cinerea ($2.5{\times}10^5$ to $2{\times}10^6$ spores/ml). But, control efficacy of fludioxonil (2 ${\mu}g$/ml) was negatively correlated with inoculum concentration. Addition of PDB in spore suspension of B. cinerea resulted in higher disease severity than non-treated control. By inoculating spore suspension including 0.5% PDB, the fungicide gave the most control activity on the disease, followed by 1% and 2% PDB. The results suggest that fludioxonil has potential to control gray mold of lettuce, but the fungicide at a concentration having moderate activity may represent low control efficacy on the disease under some conditions.

Suppression Effect of Gray Mold and Late Blight on Tomato Plants by Rhamnolipid B (Rhamnolipid B에 의한 토마토 잿빛곰팡이병과 역병의 억제효과)

  • Ahn, Ji-Ye;Park, Myung-Soo;Kim, Seul-Ki;Choi, Gyung-Ja;Jang, Kyoung-Soo;Choi, Yong-Ho;Choi, Jae-Eul;Kim, In-Seon;Kim, Jin-Cheol
    • Research in Plant Disease
    • /
    • v.15 no.3
    • /
    • pp.222-229
    • /
    • 2009
  • A Pseudomonas strain SG3 producing biosurfactant and showing antifungal and insecticidal activities was isolated from agricultural soil severely contaminated with machine oils. The antagonistic bacterium inhibited mycelial growth of all of the tested fungal pathogens. The fermentation broth of SG3 also effectively suppressed the development of various plant diseases including rice blast, tomato gray mold, tomato late blight, wheat leaf rust, barley powdery mildew and red pepper anthracnose. An antifungal substance was isolated from the fermentation broth of SG3 by ethyl acetate partitioning, silica gel column chromatography and preparative HPLC under the guide of bioassay. The chemical structure of the antifungal substance was determined to be rhamnolipid B by mass and NMR spectral analyses. The antifungal biosurfactant showed a potent in vivo antifungal activity against gray mold and late blight on tomato plants. In addition, rhamnolipid B inhibited mycelial growth of B. cinerea causing tomato gray mold and zoospore germination and mycelial growth of P. infestans causing tomato late blight. Pseudomonas sp. SG3 producing rhamnolipid B could be used as a new biocontrol agent for the control of plant diseases occurring on tomato plants.

Suppressive Effect of Organic Farming Materials on the Development of Tomato Gray Mold (토마토 잿빛곰팡이병에 대한 유기농업자재의 억제효과)

  • Hong, Sung-Jun;Kim, Yong-Ki;Shim, Chang-Ki;Kim, Min-Jeong;Park, Jong-Ho;Han, Eun-Jung;Jee, Hyeong-Jin;Kim, Suk-Chul
    • Korean Journal of Organic Agriculture
    • /
    • v.23 no.3
    • /
    • pp.567-582
    • /
    • 2015
  • Botrytis cinerea infects stems, leaves and fruits of greenhouse tomato and can cause serious economic losses. This study was conducted to develop organic farming control method against tomato gray mold. Twenty two organic farming materials including mineral and plant extracts were screened for the suppressive activity against Botrytis cinerea, in vitro and in vivo. Among the organic farming materials, sulfur, copper, Chinese twinleaf extract and rhubarb extract decreased by 51.7-90% of the spore germination of Botrytis cinerea. Also, gray mold incidence was reduced more than 90% on tomato stems by treating sulfur, seaweed extracts, rhubarb root extracts and Chinese twinleaf extract. After the selected four organic farming materials were applied on tomato cultivated in greenhouse, their control effects against the tomato gray mold were tested. When the water soluble sulfur was foliar-sprayed on the tomato leaves infected by artificial inoculation with spore suspension of Botrytis cinerea, it showed 87.9% of control value. Also, control activity of the water soluble sulfur was paralleled with chemical fungicide, diethofencarb+carbendazim. The above mentioned results indicate the sulfur formulation can be used as chemical fungicide alternatives for controlling tomato gray mold in the greenhouse.

Gray Mold Rot on Fruit of Cucumis melo var. reticulatus Caused by Botrytis cinerea (Botrytis cinerea에 의한 멜론 잿빛곰팡이병)

  • Kwon, Jin-Hyeuk;Kang, Soo-Woong;Son, Kyeng-Ae;Bae, Dong-Won;Park, Chang-Seuk
    • The Korean Journal of Mycology
    • /
    • v.27 no.4 s.91
    • /
    • pp.280-282
    • /
    • 1999
  • A new disease on mask melon grown under plastic film houses was found in Namhae area in May of 1999. Gray to dark brown mold were grown on the surface of matured fruits and infected inside tissues were discolored and rotten. Basal part of the fruit and blossom-end were frequently infected and colonized by fungi. About 2.2% of matured fruits were infected in the surveyed plastic film houses. The causal organism was isolated from the lesion and identified as Botrytis cinerea. The conidia in mass were hyaline or gray, 1-celled, mostly ellipsoid or ovoid and sized $8.8{\sim}21.2{\times}6.5{\sim}13.1\;{\mu}m$. Hyaline or pigmented conidiophores were tall, slender and determinated and, sometimes branched irregularly in upper part. Enlarged or rounded apical cells bear conidial cluster and sized $18.4{\sim}81.1{\times}4.3{\sim}11.4\;{\mu}m$. Optimum temperature for mycelial growth was recorded at $15{\sim}25^{\circ}C$. This is the first report on gray mold of melon caused by Botrytis cineria in Korea.

  • PDF

Gray Mold of Nephrolepis Caused by Botrytis cinerea (Botrytis cinerea에 의한 네프로레피스 잿빛곰팡이병)

  • Jeon Yong-Ho;Kim Jung-Ho;Kim Young-Ho
    • Research in Plant Disease
    • /
    • v.12 no.2
    • /
    • pp.115-118
    • /
    • 2006
  • In February of 2000-2001, the gray mold disease occurred on nephrolepis (Nephrolepis sp.) grown in a flower nursery farm in Suwen, Korea. Typical symptoms were water-soaked brown or blackish lesions on terminal leaf blades. Severely infected leaves were entirely blighted with grayish fungal mycelia formed on the surface. Conidia of the fungus in mass were hyaline or gray, 1-celled, mostly ellipsoid or ovoid and $13.5{\sim}16.9{\times}6.8{\sim}9.2{\mu}m$ in size. Conidiophores were formed on PDA with $8.7{\sim}11.1{\mu}m$ in width. The sclerotia were readily formed within 2 or 3 days on PDA. In addition, the Biolog database gave the causal fungus a high similarity to Botrytis cinerea (78%) with a match probability of 100%. Pathogenicity of the causal organism was proved according to Koch's postulate. The causal organism was identified as Eotrytis cinerea based on its mycological characteristics and utilization of carbon sources with Biolog system as supporting data. This is the first report of gray mold of nephrolepis caused by Botrytis cinerea in Korea.

Bacillus sp. BS061 Suppresses Powdery Mildew and Gray Mold

  • Kim, Young-Sook;Song, Ja-Gyeong;Lee, In-Kyoung;Yeo, Woon-Hyung;Yun, Bong-Sik
    • Mycobiology
    • /
    • v.41 no.2
    • /
    • pp.108-111
    • /
    • 2013
  • The use of a microorganism, or its secretions, to prevent plant disease offers an attractive alternative or supplement to synthetic fungicides for the management of plant disease without the negative effects of chemical control mechanisms. During a screening for microorganisms with the potential to be used as microbial fungicides, Bacillus sp. BS061 was isolated from a plant leaf. The strain BS061 potently inhibited the mycelial growth of Botrytis cinerea, and significantly reduced disease incidence of powdery mildew in cucumber and strawberry. We also found that the culture filtrate of BS061 inhibited the mycelial growth of various plant pathogens.

Effects of Tomato-Juice and Potassium Phosphate on the Infection of Botryis cinerea LVF12 on the Tomato Leaves (토마토쥬스와 KH$_2$PO$_4$가 Botrytis Cinerea LVF12 분생포자의 토마토 감염에 미치는 영향)

  • 손지희;이재필;김철승;임은경;송주희;김현주;박현철;문병주
    • Research in Plant Disease
    • /
    • v.7 no.3
    • /
    • pp.134-139
    • /
    • 2001
  • Effects of tomato-juice and KH$_2$PO$_4$ as exogenous nutrients on the infection of Botrytis cinerea LVF12 and pathogenicity to tomato were investigated. B. cinerea LVF12, which was previously reported as a casual agent of the gray mold rot of perilla, was used for pathogenesis on tomato leaves. No infection was induced, and no lesion developed on tomato leaves by the conidial suspension of LVF12 when the inoculum was prepared in sterilized water. However, when the conidial suspensions of LVF12 added with various concentrations and conditions of tomato-juice were inoculated on whole tomato plants, the disease was induced readily, Among them, 20% tomato juice with 0.1M KH$_2$PO$_4$ appeared to be the most suitable nutrient to promote high disease incidence on tomato. For the pathogenicity test according to the growing stage of tomato, the mature leaves were more susceptible than seedlings. Symptoms on the infected plants were initial small gray spots at the inoculated area. Later the whole leaves, petioles and stems became gray and eventually fell off, Under high humidity conditions, the diseased leaves and stems were covered with gray hyphae and conidia. All symptoms of infected plants were identical to those in the field conditions.

  • PDF