• Title/Summary/Keyword: Gravity-turn

Search Result 37, Processing Time 0.029 seconds

IMPROVEMENT OF A SEMI-IMPLICIT TWO-PHASE FLOW SOLVER ON UNSTRUCTURED MESHES (비정렬 격자계에서의 물-기체 2상 유동해석코드 수치 기법 개선)

  • Lee, H.D.;Jeong, J.J.;Cho, H.K.;Kwon, O.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.380-388
    • /
    • 2010
  • A thermal-hydraulic code, named CUPID, has been developed for the analysis of transient two-phase flows in nuclear reactor components. A two-fluid three-field model was used for steam-water two-phase flows. To obtain numerical solutions, the finite volume method was applied over unstructured cell-centered meshes. In steam-water two-phase flows, a phase change, i.e., evaporation of condensation, results in a great change in the flow field because of substantial density difference between liquid and vapor phases. Thus, two-phase flows are very sensitive to the local pressure that determines the phase change. This in turn puts emphasis on the accurate evaluation of local pressure gradient. This paper presents a new numerical scheme to evaluate the pressure gradient at cell centers on unstructured meshes. The results of the new scheme for a simple test function a gravity-driven cavity, and a wall boiling two-phase flow are compared with those of the previous schemes in the cupid code.

  • PDF

Development of a Low-cost Unmanned Underwater Vehicle and Performance Verification (저가 수중 무인 이동체 개발 및 운동성능 검증)

  • Hwang, Dongwook;Jang, Mingyu;Kim, Jinhyun
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.2
    • /
    • pp.103-112
    • /
    • 2018
  • In this paper, a high performance underwater vehicle which can be manufactured at low cost is designed and fabricated, and its performance is verified through experiments. To improve efficiency, the Myring equation is used to design the appearance and the duct structure including the thruster is planned to increase the propulsion efficiency while reducing the drag force. Through various methods, it is secured stable waterproof performance, and also is devised to have high speed movement and turning performance. The developed underwater vehicle is equipped with a high output BLDC motor to achieve a linear speed of up to 2 m/s and can change direction rapidly with stability through four rudders. The rudders are driven by coupling a timing belt and a pulley by extending the axis of a servo motor, and are equipped at the end of the body to turn heading. In addition, for stable posture control, the roll keeps its internal center of gravity low and maintains its stability due to restoring force. By controlling the four rudders, pitch and yaw are handled by the PID controller and show stable performance. To investigate the horizontal turning performance, it is confirmed that the yaw rate controller is designed and stable yaw rate control is performed.

Effect of Alkali Salts Adding on the Cooking Quality in Dried Noodles (면류용 알칼리제 처리가 건면의 조리특성에 미치는 영향)

  • 문태용;이성갑
    • Journal of the Korean Professional Engineers Association
    • /
    • v.33 no.3
    • /
    • pp.71-79
    • /
    • 2000
  • The effects of alkali salts adding on the cooking quality improving in dried noodles were investigated in the good texture maintaining for preventing solid soluble losses ,through chemical analysis and actual manufacturing practice ,the following results were obtained. Experiments were took a special flour of ASW:DNS=70:30, thickening agent(TA) composed of K2CO3 58%, Na2CO3 36% and Na4P2076%, and emulsified oil(EO) mixing of corn oil 44%, polysorbate 23%, emulsifier(ester of glycerin and fatty acids) 21%, soy lecithin 12%. When the mixing ratio of TA and EO to flour, is 0.03 and 1.5%(w/w) or morel than, satisfied the good quality. The water soluble solid matters content of the lowest 3.2% in the treating group that TA and EO is 0.03 and 1.5%(w/w) respectively, comparing to the 7.3% in the control group provides a excellent cooking quality. The research achieves the similar effects at specific gravity, water absorption ratio, weight increasing rate and volume expansion ratio. According to appearance test the more treating of TA turn the noodle into deeper yellow-green color. Turning to the deeper yellow color according to the increasing of EO provides better

  • PDF

An Analytical Study of the Effect of Inclined Angle of Road on Turn-over Accident of a High-speed Coach running on a Curved Road under Cross-wind Condition (횡풍이 작용하는 속도로의 회전구간에서 도로의 편경사각이 주행차량의 전복사고에 미치는 영향에 관한 분석연구)

  • Park, Hyeong-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.373-381
    • /
    • 2017
  • Kyeonggi Provincial Government is considering double decker bus service to solve the problem of heavy rush hour traffic. However, the height-to-width ratio is more than 1.16 times larger than that of a general high-speed single decker bus, and the center of gravity is higher. This could cause driving stability problems, such as turnover and breakaway from the lane, especially under strong side-wind conditions at high speed. In this numerical study, the driving characteristics of a model double decker bus were reviewed under side-wind and superelevation conditions at high driving speed. The rolling, pitching, and yawing moment of the model bus were calculated with CFD numerical simulation, and the results were compared to the recovery angular moments of the model bus to evaluate the dynamic stability under given driving conditions. As the model vehicle moves on a straight level road, it is stable under any side-wind conditions. However, on a curved road under side-wind conditions, it could reach unstable conditions dynamically. There is a chance that the bus will turn over when it moves on a curved road with a radius of gyration less than 100 m under side-wind (15 m/s). However, there is a very small chance of breakaway from the lane under any driving conditions.

Turning Gait Planning of a Quadruped Walking Robot with an Articulated Spine

  • Park, Se-Hoon;Lee, Yun-Jung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1926-1930
    • /
    • 2004
  • We suggest a turning gait planning of a quadruped walking robot with an articulated spine. Robot developer has tried to implement a gait more similar to that of natural animals with high stability margin. Therefore, so many types of walking robot with reasonable gait have been developed. But there is a big difference with a natural animal walking motion. A key point is the fact that natural animals use their waist-oint(articulated spine) to walk. For example, a crocodile which has short legs relative to a long body uses their waist to walk more quickly and to turn more effectively. The other animals such as tiger, dog and so forth, also use their waist. Therefore, this paper proposes discontinuous turning gait planning for a newly modeled quadruped walking robot with an articulated spine which connects the front and rear parts of the body. Turning gait is very important as same as straight gait. All animals need a turning gait to avoid obstacle or to change walking direction. Turning gait has mainly two types of gaits; circular gait and spinning gait. We apply articulated spine to above two gaits, which shows the majority of an articulated spine more effectively. Firstly, we describe a kinematic relation of a waist-joint, the hip, and the center of gravity of body, and then apply a spinning gait. Next, we apply a waist-joint to a circular gait. We compare a gait stability margin with that of a conventional single rigid body walking robot. Finally, we show the validity of a proposed gait with simulation.

  • PDF

Numerical Analysis of Two-Dimensional Motion of a Freely Falling Circular Cylinder in an Infinite Fluid (무한 유체에서 자유 낙하하는 원형 실린더의 2차원 운동에 관한 수치해석)

  • Namkoong, Kak;Choi, Hyoung-Gwon;Yoo, Jung-Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.6
    • /
    • pp.713-725
    • /
    • 2004
  • The two-dimensional motion of a freely falling circular cylinder in an infinite fluid is investigated numerically using combined formulation. The effect of vortex shedding on the motion of a freely falling cylinder is clearly seen: as the streamwise velocity of the cylinder increases due to gravity, the periodic vortex shedding induces a periodic motion of the cylinder. This motion in turn affects the flow field, which is manifested by the generation of the angular velocity vector of the cylinder parallel to the cross product of the gravitational acceleration vector and the transverse velocity vector of the cylinder. A correlation of St-Re relationship for a freely falling circular cylinder is drawn from the present results. The Strouhal number for a freely falling circular cylinder is found to be smaller than that for a fixed circular cylinder when the two Reynolds numbers based on the streamwise terminal velocity of a freely failing circular cylinder and the free stream velocity of a fixed one are the same. From "thought experiments", it is shown that the transverse motion of the cylinder plays a crucial role in reducing the Strouhal number and has an effect of reducing the Reynolds number from the viewpoint of the pressure coefficient. The mechanism of this reduction in the Strouhal number is revealed by the fact that the freely falling cylinder experiences a smaller lift force than the fixed one due to the transverse motion resulting in the retardation of the vortex shedding.

The Effect of the Speed of a Ship on Her Turning Circle (선속이 선회권에 미치는 영향에 관한 연구)

  • 김기윤
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.35 no.3
    • /
    • pp.209-214
    • /
    • 1999
  • The turning circle of a ship is the path followed by her center of gravity in making a turn of 360$^{\circ}$degrees or more with helm at constant angle. But generally it means her path traced at full angle of the rudder. For the ordinary ship the bow will be inside and the stern outside this circle.It has been usually understood that the turning circle is not essentinally affected by ship's speed at Froude numbers less than about 0.30. However, it is recently reported that the speed provide considerable effects upon the turning circle in piloting many ships actually at sea. In this paper, the author analyzed what effects the speed could provide on the turning circle theoretically from the viewpoint of ship motions and examined how the alteration of the speed at Froude no. under 0.30 affect the turning circle actually, through experiments of actual ships of a small and large size.The main results were as follows.1. Even though ship's speed at Froude no. under 0.30, the alteration of the speed affects the turning circle considerably.2. When the full ahead speeds at Froude no. under 0.30 of small and large ships were increased about 3 times slow ahead speeds, the mean rates of increase of the advances, tactical diameters and final diameters of thease ships were about 16%, 21% and 19% respectively.3. When the full ahead speeds at Froued no. under 0.30 of small and large ships were increased about 3 times slow ahead speed, the mean rate of increase of the turning circle elements of large ships was greater 10% than that of small ships. 4. When the full ahead speeds at Froued no. under 0.30 of small and large ships were increased about 3times slow ahead speeds, the mean rates of increase of the tactical diameter and final diameter of thease ships were greater than that of the advances of thease ships. 5. When only alteration of speed or sip's head turning is the effective action to avoid navigational fixed hagards, reducing the speed is always more advantageous than increasing the speed in order to shorten fore or transverse distance.

  • PDF

The Effect of the Speed of a Ship on Her Turning Circle (선속이 선회권에 미치는 영향에 관한 연구)

  • 김기윤
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.35 no.3
    • /
    • pp.210-210
    • /
    • 1999
  • The turning circle of a ship is the path followed by her center of gravity in making a turn of 360$^{\circ}$degrees or more with helm at constant angle. But generally it means her path traced at full angle of the rudder. For the ordinary ship the bow will be inside and the stern outside this circle.It has been usually understood that the turning circle is not essentinally affected by ship's speed at Froude numbers less than about 0.30. However, it is recently reported that the speed provide considerable effects upon the turning circle in piloting many ships actually at sea. In this paper, the author analyzed what effects the speed could provide on the turning circle theoretically from the viewpoint of ship motions and examined how the alteration of the speed at Froude no. under 0.30 affect the turning circle actually, through experiments of actual ships of a small and large size.The main results were as follows.1. Even though ship's speed at Froude no. under 0.30, the alteration of the speed affects the turning circle considerably.2. When the full ahead speeds at Froude no. under 0.30 of small and large ships were increased about 3 times slow ahead speeds, the mean rates of increase of the advances, tactical diameters and final diameters of thease ships were about 16%, 21% and 19% respectively.3. When the full ahead speeds at Froued no. under 0.30 of small and large ships were increased about 3 times slow ahead speed, the mean rate of increase of the turning circle elements of large ships was greater 10% than that of small ships. 4. When the full ahead speeds at Froued no. under 0.30 of small and large ships were increased about 3times slow ahead speeds, the mean rates of increase of the tactical diameter and final diameter of thease ships were greater than that of the advances of thease ships. 5. When only alteration of speed or sip's head turning is the effective action to avoid navigational fixed hagards, reducing the speed is always more advantageous than increasing the speed in order to shorten fore or transverse distance.

A Study on the Digital Architectural Space's Characteristic of Expression Based on the Traditional Architecture Properties - Focused on the Immateriality Characteristics - (전통 건축 공간 특성으로 본 디지털 건축 공간의 표현특성에 관한 연구 - 비물질적 특성을 중심으로 -)

  • Lee, Joon-Ho
    • Korean Institute of Interior Design Journal
    • /
    • v.23 no.5
    • /
    • pp.51-57
    • /
    • 2014
  • In the early 20st century, created distrust on the mechanistic and dualistic view based on the world of Descartes and Newton. As the features of this new science cannot be explained by the existing Western philosophy but can be explained by the thinking system immanent in the Oriental traditional thought, many scientists and philosophers are concentrating their interests on the Oriental philosophy. In addition, some have been making efforts to find solutions needed for a new paradigm from the thinking system of the Orient. A variety of discussions have also been raised in connection with architecture due to this philosophical change. It has now become possible to conduct free creative acts, staying away from physical limitations, including gravity by diversified simulations through a computer. This physical liberation in turn has caused new changes to the spatial concept of architecture, thereby granting the freedom of the expression that could not be even imagined before and opening a possibility of new architecture and space. At the same time, the digital space architecture actively accommodating this technology is generating a phenomenon that the existing physical and realistic things are rapidly being changed gradually to immaterial and unrealistic ones. This study has analyzed the properties of digital architectural space as the immateriality of our traditional architectural space. The results are as follows: It can be seen that the immaterial features exhibited in the digital architectural space and the traditional architectural one are not just interconnected with specific features, but they are correlated to all immaterial features. Thus, immateriality that are common in the traditional and digital architectural spaces is complementary organic, which is contained in the ambiguity of boundary between other spaces. It is regarded to the architecture as a living things in space diversity based on ideological similarities.

Effects of Clothing Involvement on Brand Attachment and Brand Loyalty -With Special Reference to Chinese College Students in Busan- (의복관여도 요인이 브랜드 애착과 브랜드 충성도에 미치는 영향 -부산지역의 대학교에 재학 중인 중국 유학생을 중심으로-)

  • Chen, Chang; Lee, Young-Sook
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.5
    • /
    • pp.173-184
    • /
    • 2010
  • The living standards of Chinese people are gradually rising, which has led more Chinese students to come to Korea for their academic career. In this respect, it seems significant to find out how clothing involvement affects brand attachment and brand loyalty of Chinese college students in Busan. In this study, we attempt to identify factors of clothing involvement that influence Chinese students' turn of mind towards brand attachment and brand loyalty. The results of our analysis are as follows: 1. Five factors of clothing involvement have been derived: fashion trend, favorable impression, planning, indifference and choice. For brand attachment, three factors of brand show-off, brand gravity and brand pride have been derived. 2. Factors of clothing involvement have positive effects on factors of brand attachment, and brand attachment also have significant effects on brand loyalty. 3. Clothing involvement significantly affects brand loyalty indirectly via brand attachment.