• 제목/요약/키워드: Gravity power

검색결과 237건 처리시간 0.027초

Alternate Energy: Gravity Powered Rail Transportation Systems

  • Bojji, Rajaram
    • International Journal of Railway
    • /
    • 제2권1호
    • /
    • pp.22-29
    • /
    • 2009
  • A simple pendulum shows how efficient gravity is in recovering energy. Any transportation is a linearly oscillating system; every load gains kinetic energy, but loses the same to come to a stop. The Gravity Power Towers comprise of a set of vertically moving heavy masses coupled, through microprocessor controlled continuously variable gear and cable system, to a horizontally rolling unit on wheels either on rail or road. The heavy masses move vertically up against gravity gaining potential energy while stopping a moving mass; move down under gravity force, giving out energy. The Tower thus accelerates or sustains the speed a rolling unit, and while decelerating, recover the kinetic energy. Speeds of 360 kmph can be attained. Recovery of energy varies from 98.5-70%; the longer the distance between stops, the lesser is recovery. The economical, omnipresent & eternal Gravity Power grants energy independence to many a nation. Global warming reduces.

  • PDF

조수 및 소수력 발전을 위한 회수를 위한 중력엔진의 개념 및 에너지 정산 (A Concept and Energy performance of a Gravity Engine for Tidal and Hydro-Power)

  • Lee, Jae-Young
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 1999년도 추계 학술발표회 논문집
    • /
    • pp.231-236
    • /
    • 1999
  • This paper is to propose a concept and performance of the gravity engine which could extract energy from sea or river as a clean and renewable and sustainable power, the tidal or hydro-power. The vertical motion of the buoyancy cylinder of the present gravity engine is converted to the mechanical work directly without any hydraulic loss. The increased gravity potential during high tide is harnessed proportional to the length of the buoyancy cylinder times tidal height which is greater than the conventional tidal power using water mill. This energy amplification results from the net energy gain between the resource energy and the imposed energy to extract water out of the buoyancy cylinder. Its efficiency is higher than the conventional water mill due to its direct mechanical conversion.

  • PDF

Simulation of Gravity Feed Oil for Aeroplane

  • Lu, Yaguo;Huang, Shengqin;Liu, Zhenxia
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.732-736
    • /
    • 2008
  • The traditional method to calculate the gravity feed is to assume that only one tank in fuel system supplies the needed fuel to the engine, and then calculated for the single branch. Actually, all fuel tanks compete for supplying oil. Our method takes into consideration all fuel tanks and therefore, we believe, our method is intrinsically superior to traditional methods and is closer to understanding the real seriousness of the oil supply situation. Firstly, the thesis gives the mathematical model for fuel flow pipe, pump, check valve and the simulation model for fuel tank. On the basis of flow network theory and time difference method, we established a new calculation method for gravity feed oil of aeroplane fuel system, secondly. This model can solve the multiple-branch and transient process simulation of gravity feed oil. Finally, we give a numerical example for a certain type of aircraft, achieved the variations of oil level and flow mass per second of each oil tanks. In addition, we also obtained the variations of the oil pressure of the engine inlet, and predicted the maximum time that the aeroplane could fly safely under gravity feed. These variations show that our proposed method of calculations is satisfactory.

  • PDF

Fast Component Placement with Optimized Long-Stroke Passive Gravity Compensation Integrated in a Cylindrical/Tubular PM Actuator

  • Paulides, J.J.H.;Encica, L.;Meessen, K.J.;Lomonova, E.A.
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제2권3호
    • /
    • pp.275-282
    • /
    • 2013
  • Applications such as vibration isolation, gravity compensation, pick-and-place machines, etc., would benefit from (long-stroke) cylindrical/tubular permanent magnet (PM) actuators with integrated passive gravity compensation to minimize the power consumption. As an example, in component placing (pick-and-place) machines on printed circuit boards, passive devices allow the powerless counteraction of translator including nozzles or tooling bits. In these applications, an increasing demand is arising for high-speed actuation with high precision and bandwidth capability mainly due to the placement head being at the foundation of the motion chain, hence, a large mass of this device will result in high force/power requirements for the driving mechanism (i.e. an H-bridge with three linear permanent magnet motors placed in an H-configuration). This paper investigates a tubular actuator topology combined with passive gravity compensation. These two functionalities are separately introduced, where the combination is verified using comprehensive three dimensional (3D) finite element analyses.

승용차의 개폐력 보조 문 (Power-Assisted Door for a Passenger Vehicle)

  • 이병수;박민규;성금길
    • 제어로봇시스템학회논문지
    • /
    • 제16권6호
    • /
    • pp.532-538
    • /
    • 2010
  • SD (Smart Door) is a human friendly power-assisted door system initially targeted for passenger car doors. The Smart Door offers comfort and safety to passengers or/and drivers by supplying additional power. Amount of power supplied by the Smart Door system is depend on the environment where the automotive is situated. It realizes comfort, for example, when the force applied by the passenger to the door is expected to be abnormal, the SD system tries to compensate passenger's effort by supplying additional force. In this study, to enhance the ease of opening and closing the doors of the passenger vehicle, a Smart Door with a power assist mechanism consisting of a motor was developed and analysed. A power assist mechanism mounted within the vehicle's door is designed and modeled for simulation purpose. The required force necessary to control the designed mechanism during the vehicle's roll, pitch and the opening angle of the door has been considered. To this end, we propose a power-assisting control strategy called "gravity cancellation". The system is analysed by numerical simulation with the gravity cancellation control algorithm.

압력 용기 수위 측정 오차 개선에 관한 연구 (A Study on Accuracy Improvement in Measuring Liquid Level inside Pressurized Vessels)

  • 김호열;변승현
    • 전기학회논문지
    • /
    • 제59권10호
    • /
    • pp.1889-1893
    • /
    • 2010
  • Differential pressure type level measuring systems have been using widely for industrial applications like drum level measurements in power plants. Because of difficulties in specific gravity compensation for vapor and liquid inside the vessel and the sensing lines, this type of measuring systems reveal significant measuring error. In this paper, the major reason causing errors on the differential pressure type level measurement is analyzed and a method of more accurate calculation for specific gravity compensation is introduced.

The Concept of a Gravity Engine and Energy Performance for Tidal and Hydro-Power

  • Lee, Jae-Young
    • 에너지공학
    • /
    • 제9권1호
    • /
    • pp.47-53
    • /
    • 2000
  • This paper is to propose the concept and performance of a gravity engine which could extract energy from sea or river as a clean. renewable and sustainable power. the vertical motion of the buoyancy cylinder of the present gravity engine is converted to the mechanical work directly without any hydraulic loss. The positive net energy between the imposed and harnessed one is achieved by the specific operating procedure. The detailed derivation of the energy balance is made based on the first principle of thermodynamics. The calculation demonstrates that the present gravity engine could harness more energy than the conventional turbine system in the same basin area because of the relatively high efficiency in the energy conversion system and added mass from the buoyancy cylinder.

  • PDF

자기조정 퍼지 PID제어기를 이용한 전력시스템의 부하주파수 제어 (Load Frequency Control of Power System using a Self-tuning Fuzzy PID Controller)

  • 이준탁
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권1호
    • /
    • pp.40-46
    • /
    • 1999
  • A self-tuning FPID(Fuzzy Proportional Intergral Derivative) controller fo load frequency control of 2-area power systemis proposed in this paper. The paramters of the proposed self-tuning FPID controller are self-tuned by the proposed fuzzy inference technique. Therefore in this paper the fuzzy inference technique of PID gains using PSGM(Product Sum Gravity Method) is presented and is applied to the load frequency control of 2-area power system. The computer simulation results show that the proposed controller give better more control characteristics than convention-al PID, FLC under load changes.

  • PDF

High-Efficiency Inhibition of Gravity Segregation in Al-Bi Immiscible Alloys by Adding Lanthanum

  • Jia, Peng;Zhang, Jinyang;Geng, Haoran;Teng, Xinying;Zhao, Degang;Yang, Zhongxi;Wang, Yi;Hu, Song;Xiang, Jun;Hu, Xun
    • Metals and materials international
    • /
    • 제24권6호
    • /
    • pp.1262-1274
    • /
    • 2018
  • The inhibition of gravity segregation has been a long-standing challenge in fabrication and applications of homogeneous immiscible alloys. Therefore, the effect of rare-earth La on the gravity segregation of Al-Bi immiscible alloys was investigated to understand the homogenization mechanism. The results showed that the addition of La can completely suppress the gravity segregation. This is attributed to the nucleation of Bi-rich liquid phase on the in-situ produced $LaBi_2$ phase and the change of the shape of $LaBi_2@Bi$ droplets. In addition, a novel strategy is developed to prepare the homogeneous immiscible alloys through the addition of rare-earth elements. This strategy not only is applicable to other immiscible alloys, but also is conducive to finding more elements to suppress the gravity segregation. This study provided a useful reference for the fabrication of the homogeneous immiscible alloys.

EGM96와 EIGEN-CG01C 모델에 의한 한반도 주변의 중력포텐셜 비교분석 (Gravity Potential Comparative Analysis around Korean Peninsula by EGM96 and EIGEN-CG01C Models)

  • 유상훈;김창환;민경덕
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2005년도 공동학술대회 논문집
    • /
    • pp.261-266
    • /
    • 2005
  • 인공위성 측지학의 발달로 최근 들어 정밀도와 해상도가 높아진 중력포텐셜 모델들이 공개되었다. 근래에 가장 많이 사용되는 EGM96과 CHAMP, GRACE 등의 저고도 위성자료를 기반으로 하는 가장 최근의 EIGEN-CG01C 모델을 이용하여 한반도와 인근지역을 포함하는 $123^{\circ}{\sim}132^{\circ}$ E, $33^{\circ}{\sim}43^{\circ}$ N의 연구지역에서 지오이드와 중력이상을 계산하고, 비교 검토하였다. 두 모델은 지오이드와 중력이상에서 0.90이상의 매우 높은 상관관계를 가지고 있으나, Amplitude 분석에서 EIGEN-CG01C 모델이 고주파영역이 우세한 것으로 나타났다. 두 모델을 통해 계산된 중력이상에서 북한지역 및 황해 연안 일부에서 다소 차이를 보인다. Power spectrum 분석을 통하여 대규모 지구조나 지하자원 탐사에 유용하게 활용될 수 있는 잔여이상을 계산하였다.

  • PDF